USE OF AZOLLA AS A BIOFERTILIZER TO REDUCE THE DEPENDANCE ON THE CHEMICAL FERTILIZERS

By

MOHAMED EL-SAYED MAHMOUD NOUR-ELDIN

B.Sc. Agric. (Biochemistry), 1980 Ain Shams University

A thesis submitted in partial fulfillment

•

the requirements for the Master of degree

 y_n

Department of Agriculture Science

Institute of Environmental Studies and Research
Ain Shams University

1997

USE OF AZOLLA AS A BIOFERTILIZER TO REDUCE THE DEPENDANCE ON THE CHEMICAL FERTILIZERS

Ву

MOHAMED EL-SAYED MAHMOUD NOUR-ELDIN

B.Sc. Agric. (Biochemistry), 1980 Ain Shams University

Under supervision of:

Prof. Dr. Z.A. El-Hadidy

Prof. of Agric. Biochemistry, Fac. Agric., Ain Shams Univ.

Prof. Dr. Y.Z. Ishac

Prof. of Agric. Microbiol., Fac. Agric., Ain Shams Univ.

Approval sheet

SE OF AZOLLA AS A BIOFERTILIZER TO REDUCE THE DEPENDANCE ON THE CHEMICAL FERTILIZERS

Вy

NOHAMED EL-SAYED MAHMOUD NOUR-ELDIN

B.Sc. Agric. (Biochemistry), 1980 Ain Shams University

rof. Dr. Y. Ghaly
Prof. of Agric. Biochemistry, Fac. Agric, Cairo Univ.

rof. Dr. M.A. El-Borollosy

Prof. of Agric. Microbiology, Fac. Agric., Ain Shams
Univ.

Prof. of Agric. Microbiology, and director of the Unit. of Biofertilizers, Fac. Agric., Ain Shams Univ.

Prof. of Agric. Biochemistry and Director of Central Laboratory, Fac. Agric., Ain Shams Univ.

ate\$ / / /1997

ACKNOWLEDGEMENT

PRAISE AND THANKS BE TO ALLAH, THE MOST MERCIFUL FOR ASSISTING AND DIRECTING ME TO THE RIGHT WAY.

This work has been carried out under the supervision and direction of **Prof. Dr. Z.A. El-Hadidy**, Prof. of Agric. Biochemistry and Director of Central Laboratory, Fac. Agric., Ain-Shams Univ.; and **Prof. Dr. Y.Z. Ishac,** Prof. of Agric. Microbiol.' and Director of the Unit of Biofertilizers, Fac. Agric., Ain-Shams Univ. I wish to express my deepest gratitude to them for suggesting the problem, valuable advise, guidance and constructive criticism.

Thanks are also due to all my colleagues and staff members in Soil and Water Res. Inst., ARC; Unit of Biofertilizers and Biochem. Dept., Fac. Agric., Ain-Shams Univ., for providing facilities and encouragement.

USE OF AZOLLA AS A BIOFERTILIZER TO REDUCE THE DEPENDANCE ON THE CHEMICAL FERTILIZERS

MOHAMED EL-SAYED MAHMOUD NOUR-ELDIN

ABSTRACT

Two pot experiments were carried out in two successive seasons (1992 and 1993) to study the impacts of incorporating Azolla pinnata and (or) addition of urea in different doses on growth and yield of rice plants. For achieving such target, plant growth, total nitrogen, phosphorus, potassium, ash, total hydrolysable carbohydrates and soluble sugars were traced in plant shoots after 60 and 120 days of transplanting. Grain and straw yields were determined at the end of experiments (120 days after transplanting) as well as grain quality (their content of total hydrolysable carbohydrates, total soluble sugars, reducing and non-reducing sugars, starch, protein and protein fractions namely albumin, globulin, prolamins and gluteline and chemical composition of straw.

Enzymatic activities (phosphorylase and amylases) were estimated in plant leaves during different plant growth stages.

The obtained results generally indicate that incorporation of Azolla separately or in a combination with urea significantly improved the growth of rice plants and increased straw and grain yields. All other tested parameters almostly showed a response to such application. Supplementing urea as a sole nitrogenous fertilizer, in most cases, gave less responses.

Key Words: Azolla, Biofertilizers, Amylases, Phosphorylase.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	2
2.1. Definition and general characteristics of	
Azolla	3
2.2. Chemical constituents of Azilla	3
2.3. Nitrogen fixation and Azolla-Anabaena	
symbiosis	4
2.4. Azolla as a green manure	5
2.4.1. Amount of N ₂ -fixed by Azolla	5
2.4.2. Recovery of N ₂ -fixed by Azolla	6
2.5. Effect of Azolla on rice yield	9
2.6. Effect of Azolla on soil fertility	12
2.7. Chemical composition of rice grain	13
2.7.1. Rice proteins	14
2.7.1.1. Protein grain quality of rice	16
2.7.1.2. Effect of biofertilizers on rice grain	
quality	16
2.7.1.3. Effect of nitrogen fertilization on	
chemical composition of rice	17
2.7.2. Rice carbohydrates	18
2.7.2.1 Polysaccharides	18
2.7.2.2. Di and mono-saccharides	19
2.7.3. Major rice enzymes	19
2.7.3.1 Phosphorylase	19
2.7.3.2. Amylases	20
2.7.4. Macro minerals	20
2 MATERIAL AND METHODS	21
3. MATERIAL AND METHODS	21
3.1. Materials:	21
3.1.1. Soil used	21
3.1.2. Rice grains used	21

	Page
3.1.3. <i>Azolla</i> strain	21
3.1.4. Azolla medium	21
3.2. Methods:	23
3.2.1. Preparation of Azolla inoculum for	
field application	23
3.2.2. Azolla cultivation	23
3.2.3. Nitrogen content of Azolla	24
3.2.4. Acetylene reduction activity (A.R.A)	
of Azolla (nitrogenase activity)	24
3.2.5. Fresh and dry weight of Azolla	25
3.2.6. Layout of experiments	25
3.2.6.1. Rice growth parameters	26
3.2.6.1.1. Plant height	26
3.2.6.1.2. Shoots dry weight	26
3.2.6.1.3. Grain yield	26
3.2.6.1.4. Straw yield	27
3.2.6.1.5. Weight of 1000 grains	27
3.2.6.1.6. Panicles dry weight	27
3.2.6.1.7. Panicle length	27
3.2.6.1.8. Number of panicles	27
3.2.6.1.9. Number of tillers	27
3.2.6.2. Chemical analyses	27
3.2.6.2.1. Total nitrogen	27
3.2.6.2.2. Organic carbon in soil	27
3.2.6.2.3. Protein content in rice grains	28
3.2.6.2.4. Protein fractions of rice grains	28
3.2.6.2.5. Total hydrolysable carbohydrates.	28
3.2.6.2.6. Total soluble sugars	29
3.2.6.2.7. Reducing sugars	29
3.2.6.2.8. Non-reducing sugars	30
3 7 6 7 9 Starch	30

	Page
3.2.6.2.10. Ash	30
3.2.6.2.11. Potassium	30
3,2.6.2.12. Phosphorus	30
3.2.6.3. Enzymes	30
3.2.6.3.1. Amylases activity	30
3.2.6.3.2. Phosphorylase activity	31
3.2.7. Statistical analysis	32
4. RESULTS	33
4.1. Growth and N ₂ -fixation activity of Azolla	33
4.2. Effect of Azolla incorporation and (or) urea	
on the growth and yield of rice plants	33
4.2.1. On plant growth	33
4.2.2. On yield	42
4.3. Effect of Azolla incorporation and (or) urea	
on rice grain quality	47
4.4. Effect of Azolla incorporation and (or)	
urea on protein and carbohydrate content	
of rice straw	50
4.5. Effect of Azolla incorporation and (or) urea	
on N.P.K and ash content of rice grains and	
straw	55
4.5.1. In rice straw	55
4.5.2. In grains	55
4.6. Effect of Azolla incorporation and (or) urea	
on enzymatic activities in rice leaves	60
4.6.1. Phosphorylase	60
4.6.2. Amylases	60
4.7. Effect of <i>Azolla</i> incorporation and (or) urea	
on soil total nitrogen and organic carbon	
content	64

	Page
5. DISCUSSION	67
6. SUMMARY	73
7. REFERENCES	80
ARABIC SUMMARY	