SORPTION STUDIES ON SOME HAZARDOUS FISSION RADIONUCLIDES ON CERIUM(IV) ANTIMONATE CATION EXCHANGER

Thesis Submitted to Faculty of Science Ain Shams University

In Partial Fulfillment for Degree of Master Science

By

SABER ABDEL-FATTAH MAHMOUD SHADY

B.Sc. Chemistry

630 67

Supervised By

Prof. Dr. M.F.El-Shahat Prof. of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. H.F.Alv Prof. of Nuclear Chemistry Chairman of Atomic Energy Authority

Prof. Dr. I.M.El-Naggar

Prof. of Physical Chemistry Head of Nuclear Fuel Management Division Hot Laboratories Center Atomic Energy Authority

1997

SORPTION STUDIES ON SOME HAZARDOUS FISSION RADIONUCLIDES ON CERIUM(IV) ANTIMONATE CATION EXCHANGER

Supervisor	Approved
Prof. Dr. M.F.El-Shahat	Il Suhat
Prof. Dr. H.F.Aly	***************************************
Prof. Dr. I.M.El-Naggar	400000000000000000000000000000000000000

Prof. Dr. A.F.M.Fahmy

A.F. M. Fahm

Head of Chemistry Department

Faculty of Science,

Ain Shams University

CONTENTS

		Page
Acknowledge	ment	i
List of Publications		ii
List of Tables		iii
List of Figures		iv
Abstract		v
Chapter I I	ntroduction	1
Chapter II E	experimental	41
Chapter III F	Results and Discussion	49
References		111
Summary		131
Arabic Summa	arv	

	Pages
I-Introduction	1
1-1.Introductory outline	1
1-2. lon-exchange	2
1-2.1.Ion-exchange kinetics	2
1-2.1.1. Film diffusion	3
1-2.1.2. Particle diffusion	4
1-2.1.3. Adsorption as a chemical phenomenon	5
1-2.1.4 Distribution coefficient	6
1-2.3. Sorption isotherm	7
1-3. Inorganic ion exchangers	8
1-3.1. Classification of synthetic inorganic ion exchangers	9
1-3.1.1 Hydrous oxides	9
1-3.1.2 Salts of heteropolyacids	10
1-3.1.3 Insoluble ferrocyanides	10
1-3.1.4 Synthetic aluminosilicates	11
1-3.1.5 Miscellaneous ion exchangers	12
1-3.1.6 Acidic salts of multivalent metals	12
1-3.2. General properties of synthetic inorganic	
ion exchanger	18
1-3.2.1 Antimonates as inorganic ion exchangers	21
1-3.2.2 Cerium(IV) antimonate cation exchanger	
preparation and characterization	34
1-3.2.3 Radiation stability	37
II- Experimental	41
2-1. Materials	41
2-1.1. Chemical reagents	41
2-1.2. Radioactive materials	41
2-2. Radioactive assay	43
2-3. Preparation of cerium (IV) antimonate	43
2-4. Characterization of the prepared Sample	44
2-4.1. X-ray diffraction and infrared spectra	44
2-4.2. Thermal analysis	44
2-5. Chemical stability	44
2-6. Capacity of Cerium(IV) antimonate for Cs ⁺ and Na ⁺	45
ions	
2-7. Kinetic measurements	45
2-8. Radiation stability	46
2-9. Distribution studies	47
2-10. Sorption isotherms	48

III- Results and discussions	49
3-1. Preparation and characterization of cerium(IV) antimonate (CeSb)	49
3-2. Distribution studies	54
3-3. Water content and apparent capacity measurements	68
3-4. Kinetic studies	71
3-5. Sorption isotherms	98
3-6. References 3-7. Summary	111 131
3-8. Arabic summary	134

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to Dr. H.F.Aly Prof. of Nuclear Chemistry and Chairman of the Atomic Energy Authority (EGYPT) for his encouragement, kind help, valuable discussion and supervision. I wish to record my sincere appreciation to Prof. Dr. M.F.El-Shahat, Prof. of Analytical and Inorganic Chemistry. Faculty of Science, Ain Shams University for his interest and kind acceptance to sponsor this work at the university.

I express my sincere gratitude and greatefulness to Prof. Dr. I.M.El-Naggar Prof. of Physical Chemistry and Head of Nuclear Fuel Management Division, Hot Labs. Centre, Atomic Energy Authority for suggesting the point of research, valuable guidance and continuous help throughout the course of the present work and for having many fruitful discussion regarding the interpretation of the data.

I would like to express my sincere appreciation to Dr. E.S.Zakaria for his interest, encouragement and valuable revision of the manuscript. I finally thanks all colleagues in the Nuclear Fuel Technology Department. Hot Labs. Centre for their nice and cooperative interactions.

LIST OF PUBLICATION

1- Radiotracer Studies on Adsorption of Some Hazardous Fission Radionuclides on

Cerium and Tin Antimonates Cation Exchangers.

I.M.El-Naggar, M.M.Abdel-Hamid, S.A.Shady and H.F.Aly
Radioactive Waste Management and Environmental Remediation, ASME
Germany, 1995.

2- Ion Exchange Kinetics of Some Heavy Metal Ions on Cerium(IV) Antimonate Cation Exchanger.

I.M.El-Naggar, M.M.Abdel-Hamid, E.S.Zakaria, S.A.Shady and H.F.Aly 6th Conference of Nuclear Science and Applications, 15-20 March, 1996. Cairo, Egypt.

3- Sorption Behaviour of Some Hazardous Fission Products on Cerium(IV) Antimonate Cation Exchanger.

I.M.El-Naggar, E.S.Zakaria, S.A.Shady and H.F.Aly
6th Conference of Nuclear Science and Applications, 15-20 March, 1996.
Cairo, Egypt.

4- Ion Exchange Equilibria of Some Heavy Metal Ions on Cerium(IV) Antimonate.

I.M.Ei-Naggar, E.S.Zakaria, S.A.Shady, M.M.Abdel-Hamid and H.F.Aly

4th International Conference on New Trends in Chemistry, 4-9 January, 1997,

Cairo University, Giza, Egypt.

List of Tables

		Pages
Table, L	Main chemicals used	42
Table.2.	Solubility of cerium(IV) antimonate	50
	K _d values and separation factors (a) of Na ⁺ , Cs ⁺ ,	
Table.3.	S ₁ 2+ and Eu ³⁺ in HNO ₃ media on CeSb	64
m II I	Capacity for Na ⁺ and Cs ⁺ ions on various cerium	
Table.4.	(IV) antimonate samples deied at different	
	· · · ·	70
	Temperatures	. ~
Table.5.	Values of diffusion coefficients of Zn ²⁺ , Sr ²⁺ ,	
	Co2+ and Eu3+ at different particle diameters of	73
	('eSb at 25 ± 1 °C	13
Table.6.	Thermodynamic parameters of Zn ²⁺ /H ⁺ system on	
	cerium(IV) antimonate at different reaction	0.0
	temperatures	86
Table.7.	Thermodynamic parameters of Sr ²⁺ /H ⁺ system on	
	cerium(IV) antimonate at different reaction	
	tommeratures	87
Table.8.	Thermodynamic parameters of Eu ³⁺ /H ⁺ system on	
Table.o.	cerium(IV) antimonate at different reaction	
	temperatures	88
Table.9.	Thermodynamic parameters for the diffusion of	
raute. 7.	Co ²⁺ on cerium(IV) antimonate heated at 50, 200	
	and 400°C with different temperatures	88
	and 400.00 with different temperatures	

List of figures

		Pages
Figure.1	Structure of amorphous titanium(IV) antimonate	23
Figure.2	Structure of amorphous cerium(IV) antimonate	27
Figure 3	Infrared spectra of cerium(IV) antimonate at	
	different heating temperatures	52
Figure.4	DTA and TG curves of cerium(IV) antimonate	
	dried at 50°C	53
Figure.5	X-ray diffraction patterns of cerium(IV)	
. 17.12.2.1	antimonate at different heating temperatures	55
Figure.6	Log kd of Eu3+, Sr2+, Cs+ and Na+ as a function	
	of nitric acid concentration on cerium(IV)	
	antimonate at 25°C	55
Figure.7	The uptake of Eu3+ as a function of nitric acid	
- 1/241-011	acid concentration on cerium(IV) antimonate of	
	various drying temperatures 50, 200 and 400°C	57
Figure.8	The uptake of Eu ³⁺ as a function of nitric acid	
1.844.0	concentration on cerium(IV) antimonate at	
	different reaction temperatures 50, 40 and 60°C	58
Figure.9	Effect of NaNO ₃ on adsorption of Eu ³⁺ on nitric	
2.500.000	acid concentration on cerium(IV) antimonate at 1M	
	HNO3	59
Figure.10	The uptake of Eu ³⁺ as a function of nitric acid	
1 18410.10	concentrations on cerium(IV) antimonate at	
	different boric acid concentrations	60
Figure.11	The uptake of Eu ³⁺ as a function of nitric acid	00
1 (2012.11	concentrations on cerium(IV) antimonate at	
	different nitric acid concentrations	61
Figure, (2	The uptake of Eu ³⁺ as a function of nitric acid	01
1 igute. 12	concentrations on cerium(IV) antimonate at	
	different EDTA concentrations	62
Figure, 13	Effect of uranium and thorium as competiting ions	02
i içaic. i	on adsorption of Eu ³⁺ on cerium(IV) antimonate	
	as a function of nitric acid concentrations	63
Figure 14	Plots of F and Bt against time for exchange of	05
1 12.11.1	Eu ³⁺ at different concentrations on cerium(IV)	
	antimonate at 25°C	74
Figure.15	Plots of F and Bt against time for exchange of	′ '
· · įdatė. · · s	Co ²⁺ at different concentrations on cerium(IV)	
	antimonate at 25°C	75
Figure 16	Plots of F and Bt against time for exchange of Sr ²⁺	, ,
1 15-1110 100	on cerium(IV) antimonate of different particle	
	diameters at 25°C.	76
	diffraction at 25 C.	, 0

Figure 17	Plots of F and Bt against time for exchange of	
	Zn ²⁺ on cerium(IV) antimonate of different	77
	particle diameters at 25°C.	
Figure, 18	Plots of F and Bt against time for exchange of	
·	Eu3+ on cerium(IV) antimonate of different	
	particle sizes at 25°C.	78
Figure.19	Plots of F and Bt against 1/r ² for exchange of	
	Co^{2+} , Zn^{2+} , Sr^{2+} and Eu^{3+} on CeSb at 25 ± 1 °C.	80
Figure.20	Plots of F and Bt against time for exchange of	
	Co ²⁺ on CeSb (dried at 50°C) at different reaction	
	temperatures at (25, 40 and 60°C).	81
Figure.21	Plots of F and Bt against time for exchange of Sr ²⁺	
ζ.	on cerium(IV) antimonate at different reaction	
	temperatures at (25, 40 and 60°C).	82
Figure.22	Plots of F and Bt against time for exchange of	
	Zn ²⁺ on cerium(IV) antimonate at different	
	reaction temperatures at (25, 40 and 60°C).	83
Figure.23	Plots of F and Bt against time for exchange of	
	Eu3+ on cerium(IV) antimonate at different	
	reaction temperatures at (25, 40 and 60°C).	84
Figure.24	Plots of F and Bt against time for exchange of	
C	Co ²⁺ on CeSb (dried at 200 °C) at different	
	reaction temperatures at (25, 40 and 60°C).	90
Figure.25	Plots of F and Bt against time for exchange of	
	Co ²⁺ on CeSb (dried at 200 °C) at different	
	reaction temperatures at (25, 40 and 60°C).	91
Figure.26	Arrhenius plots for exchange of Zn ²⁺ , Sr ²⁺ , Co ²⁺	
*	and Eu ³⁺ on CeSb.	92
Figure.27	Arrhenius plots for the exchange of Co ²⁺ on	
	cerium(IV) antimonate at different drying	
	temperatures at (50, 200 and 400°C).	93
Figure.28	The correlation between dS* and Ea for Zn ²⁺ ,	
`	Sr ²⁺ , Co ²⁺ and Eu ³⁺ on on cerium(IV)	
	antimonate at 25°C	97
Figure.29	Freundlich adsorption isotherm for the adsorption	
	of Eu3+ ion on cerium(IV) antimonate at different	
	reaction temperatures at (25, 40 and 60°C).	99
Figure.30	Langmuir adsorption isotherm for the adsorption of	
	Co ²⁺ ion on cerium(IV) antimonate at different	
	reaction temperatures at 25, 40 and 60°C	101
Figure.31	Plot of In a against 1/T for adsorption of Co ²⁺ on	
	cerium(IV) antimonate	102

.

.