



# NUMERICAL MODELING FOR GROUNDWATER CONDITIONS IN WEST TAHTA AREA

### THESIS

Submitted in partial fulfillment of the degree of master of science in civil engineering

627.56 H.A

i

633 ΒY MOHAMED ABD EL-HAMYD MOHAMED DAWOUD

B.Sc. Civil engineering

SUPERVISED BY

Prof. Dr. Abd El-Fatah El-Feky Head of Irrigation and Hydraulics Dept. Ain Shams university

Prof. Dr. Mohamed M. Nour El-Din Professor of Irrigation and Hydraulics Faculty of Engineering

Ain Shams University,

Dr.Nahed E. El-Arabi Head of Nile Basin Research Department, Reasrch Institute

for Groundwater (RIGW).

Cairo, 1997



# APPROVAL SHEET

THESIS: NUMERICAL MODELING FOR GROUNDWATER

CONDITIONS IN WEST TAHTA AREA

By : Eng. Mohamed Abd El-Hamyd Dawoud

This Thesis for M.Sc. Degree has been Approved by:

Hefry 1. Www

Prof. Dr. Abd El-Fattah El-Feky

Head of Irrigation and Hydraulic Department, Faculty of Engineering, Ain Shams University.

Prof.Dr. Mohamed M. Nour El Din

Professor of Irrigation and Hydraulics, Faculty of Engineering, Ain Shams University.

Prof. Dr.: Kamal Hefny Hussin

Ex. Director of Research Institute for Groundwater, National Rsearch Center.

Prof. Dr.: Abd El-Kawy Mokhtar Kalifa

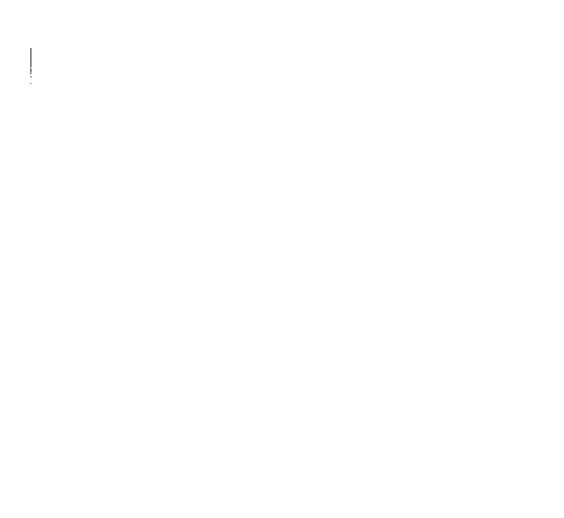
Professor of Irrigation and Hydraulics,

Faculty of Engineering, Ain Shams University.

Date of Examination: / / 1997



### Acknowledgment


First and foremost, I thank God the most beneficial and the most merciful for his help.

My appreciation and gratitude to Prof. Dr. Abdel Fattah El Feky, the head of the irrigation and hydraulies department, Faculty of Engineering, Ain Shams University for his fruitful discussions and valuable comments. Without his support and encouragement this work would not have come to light.

To Dr. Mohamed Nour El Din, Assistant Prof., Irrigation and Hydraulic department, Faculty of Engineering, Ain Shams University, and Dr. Nahed El Araby, Head of Nile Basin department, Research Institute for Groundwater. National Water Research Center, The best appreciations and thanks for their efforts and support throughout the work.

The author is also grateful to Prof. Dr. Fatma A. Attia, the director of Research Institute for Groundwater for her kind help. The author also wishes to thank the staff of the Research Institute for Groundwater for their support.

Finally, the author wishes to mention the great help and the tolerance of his parents, brothers and wife throughout the course of the work.



# TABLE OF CONTENTS

| ACKNOWLEDGMENT                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                 |
| TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                                                                                                        |
| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                          |
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                           |
| CHAPTER 1 INTRODUCTION1                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.1 STATEMENT OF THE PROBLEM 1   1.2 RESEARCH OBJECTIVES 5   1.3 RESEARCH ACTIVITIES 5   1.4 Scope of the Study 6                                                                                                                                                                                                                                                                                        |
| CHAPTER 2 LITERATURE REVIEW8                                                                                                                                                                                                                                                                                                                                                                             |
| 2.1 Introduction 8   2.2 Groundwater Flow Models 9   2.2.1 Physical sand tank models 9   2.2.2 Physical analog models 10   a) Viscous flow models 11   b) Electrical analog models 11   2.2.3 Mathematical models 12   a) Analytical models 13   b) Numerical models 14   2.3 Previous Studies 17   2.3.1 Simulation of an area containing drains 17   2.3.2 Control of waterlogging and salinization 19 |
| CHAPTER 3 SOLVING THE GROUNDWATER FLOW                                                                                                                                                                                                                                                                                                                                                                   |
| EQUATION USING FINIT ELEMENT METHOD22                                                                                                                                                                                                                                                                                                                                                                    |
| 3.1 Introduction                                                                                                                                                                                                                                                                                                                                                                                         |


| 3.2 GALERKIN'S METHOD                                 | 24  |
|-------------------------------------------------------|-----|
| 3.3 APPLICATION OF FINITE ELEMENT METHOD TO SOLVE THE |     |
| GROUNDWATER FLOW EQUATION                             |     |
| 3.4 MODEL DEVELOPMENT                                 |     |
| 3.4.1 Recharge without drainage:                      | 30  |
| 3.4.2 Areas containing tile drains:                   |     |
| 3.4.3 Rivers and open drains:                         |     |
| 3.5 COMPUTER PROGRAMMING                              |     |
| 3.6 Verification of the Developed Model               | 37  |
| . CHAPTER 4 HYDROGEOLOGICAL SETTING AND               |     |
| NUMERICAL SIMULATION OF THE STUDY AREA                | 43  |
| 4.1 Introduction                                      |     |
| 4.2 Physical Setting                                  |     |
| 4.2.1 Location and topography                         |     |
| 4.2.2 Soils                                           |     |
| 4.2.3 Land use                                        |     |
| 4.2.4 Climate and evapotranspiration                  |     |
| 4.3 Hydrogeology                                      |     |
| 4.3.1 Geology                                         | 46  |
| 4.3.2 Aquifer system                                  | :48 |
| 4.3.3 Hydraulic characteristics                       |     |
| 4.3.4 Recharge and discharge condition                | 50  |
| 4.3.5 Groundwater flow                                | 51  |
| 4.3.6 Groundwater quality                             |     |
| 4.4 NUMERICAL SIMULATION OF THE STUDY AREA            | 56  |
| 4.4.1 General background                              |     |
| 4.4.2 BOUNDARY CONDITIONS                             | 57  |
| 4.4.3 Calibration of the model                        | 57  |
| 4.4.4 Sensitivity analysis                            | 61  |
| 4.4.5 Calibrated model results                        |     |
| CHAPTER 5 DEVELOPMENT AND TESTING OF SENARIO          | os  |
| 5.1 DEVELOPMENT SCENARIOS                             |     |
| 5.2 Testing of Development senarios                   | 68  |
| 5.2.1 Scenario 1                                      |     |
| - Economic Evaluation of scenario 1                   | 72  |

| 5.2.2 Scenario 2                    | 77       |
|-------------------------------------|----------|
| - Economic Evaluation of Scenario 2 | 81       |
| 5.2.3 Senario3                      | 81       |
| - Economic Evaluation of Scenario 3 | 84       |
| - RETURN BENEFITS OF SCENARIO 3     | 84       |
| CHAPTER 6 SUMMARY, CONCLUSIONS AND  |          |
| RECOMMENDATIONS                     | 86       |
| RECOMMENDATIONS                     | 86       |
| 6.1 SUMMARY AND CONCLUSIONS.        | 86<br>87 |
| 6.1 SUMMARY AND CONCLUSIONS         | 86<br>87 |

r

|  |  | · |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |

# CHAPTER 1 INTRODUCTION



#### CHAPTER 1

#### INTRODUCTION

### 1.1 Statement of the Problem

Egypt lies within the arid belt of North Africa and South West Asia. Ancient Egyptians in the Nile Valley and Delta used groundwater to supplement irrigation during the draught period. Nowadays groundwater is currently widely used for agricultural and drinking purposes in the fringes of Nile valley and Delta areas, which present the reclaimed desert areas and coastal zones.

Groundwater has started to play an important role in Egypt, and the other arid countries. Preliminary estimates carried out indicate that about 500 billion m<sup>3</sup> of groundwater is available in the Nile Valley and the Delta. The annual abstraction of groundwater for domestic, industrial and agricultural purposes in Egypt is estimated at about 2.6 billion m<sup>3</sup>. In the coming decades the annual extraction is expected to be increased by about 90%, to 4.9 billion m<sup>3</sup>, which is approximately equivalent to the annual recharge rate.

In hydrological terms, the Nile Valley is a long narrow basin. Since the precipitation is negligible, there is only one source of replenishment: Nile water from High Dam. Due to the continuous growth of population and the urgent need for food security, expanding the reclamation of new lands within the unlimited desert area of Egypt, has started with the desert fringes of the Nile Valley and Delta. So, the groundwater becomes an important integral part

of the water resources of the national policy. Extensive area of traditionally cultivated lands in the Nile Valley have become waterlogged and salinized since adjacent reclaimed desert lands are cultivated and irrigated. Groundwater seepage occurs through the aquifer according to topography from the high reclaimed area to the low-lying old land. Due to the increase in the piezometric head, upward flow from the aquifer to the semi-confining layer occurred and the problem took place. Hence, the water table level in the semi-confining layer increased till it reaches a dangerous stage in the low cultivated lands adjacent to the fringes.

In West Tahta about 5000 feddans (21.3 km<sup>2</sup>) of desert lands were reclaimed along the fringes of the Nile Valley, adjacent to the traditionally cultivated area, in 1978. Figure (1.1) shows the location of the study area. The topographic level of the reclaimed area of West Tahta is 10 to 25 meters above the level of the ground surface in the adjacent traditionally cultivated lands. To supply the reclaimed desert area with irrigation water, four surface water pumping station and a system of irrigation canals were constructed. The main and lateral irrigation canals are not lined and the soils are sandy. So, the subsarface water losses due to leakage from the irrigation canals and irrigated areas into subsoil are considerably high. This leakage makes continuous recharge and seepage from the high reclaimed areas to the low traditionally cultivated areas. Consequently a strip of 600 meters (1000 feddans) of traditionally cultivated lands is severely affected by waterlogging and salinization. Figure (1.2) presents the land use for the study area.