

Finite Element Analysis Of Steel Frames Including Cladding Stiffness

Ву

Samir Mekheil Youssef

A Thesis

Submitted In Partial Fulfillment

For The Requirement Of The Degree Of Master Of Science

In Structural Engineering

Supervised By

Dr. A. Watson Bishara

Prof. Of Theory Of Structures
Faculty Of Engineering Ain Shams Univerist

Dr. Mostafa K. M. Zidan

Prof. Of Theory Of Structures
Faculty Of Engineering Ain Shams University

51279

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Sience in Structural Engineering.

The work included in this was carried out by the outhor in the Department of Structural Engineering Ain Shams University , from Oct. 1989 to Feb. 1995 .

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date : 25/2//995

Signture: 🖘~~

Name : Samir M. Youssef

EXAMINERS COMMITTEE

Name and Affiliation

Signature

1- Prof. Dr. SABRY SAMAAN MEKHAEIL

Samaa

Professor of Structural Engineering
Faculty of Engineering
Cairo University.

2-Prof.Dr. ABD EL-MONEM AHMED KORASHY

Ahmed K starty

Professor of Structural Engineering
Faculty of Engineering
Ain Shams University.

3-Prof. Dr. ABD EL-RACUF WATSON BESHARA

A-Warshine

Professor of Structural Engineering
Faculty of Engineering
Ain Shams University.

4-Prof.Dr. MOSTAFA K. M. ZIDAN

Professor of Structural Engineering

Faculty of Engineering

Ain Shams University.

Jaid .

ACKNOWLEDGMENT

The auther wishes to introduce his favourit thanks and sincere gratitude to Dr. Abdel Raouf Watson Beshara. professor of structural analysis, Structural Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, for his help and valuable quidance throughout the reshearch.

Also indebeted to Dr. Mostafa K. M. Zidan professor of Structural Engineering, Ain Shams University, Cairo for his supervision, comments and kind help in carring out this work.

To

MY MOTHER and MY FATHER .

Contents

Chapt	er 1	Pag1
1.1	Introduction.	1
1.2	Historical background.	3
1.3	Principles of diaphragm action.	3
1.4	Arrangement of sheeting.	7
1.5	Types of buildings incorporating diaphragm	
	action in its design.	7
1.5.1	Structures whose stability is wholly	
	dependent on diaphragm action.	9
1.5.2	Structures whose stability is partly	
	dependent on the diaphragm action.	9
1.6	The basic shear panel.	10
1.7	Necessary condition for stressed skin action	13
1.8	Flexibility and strength of basic shear pane	115
1.8.1	Testing and experimental formulas	16
1.8.2	Design expression	18
1.9	Expressions for diaphragm flexibility	18
	(cantiliver panel , sheeting perpendicular t	o span)
1.9.1	Flexibility due to distortion of the	
	sheeting profile.	19
1.9.2	Flexibility due to shear strain in the sheet	22
1.9.3	Flexibility due to movement at the sheet to	
	perpendicular member fasteners	23
1.9.4	Flexibility due to movement in seams	24
1.9.5	Flexibility due to movement in the sheet to	

parallel member fasteners.	24
1.9.6 Flexibility due to movement at the perpendi	cular
member to parallel member (purlin to rafter	:)
connections.	25
.9.7 Flexibility due to axial strain in the edge	:
members.	26
1.9.8 Summation of component flexibilites	26
1.10 Simple elastic calculation methods for stru	ctures
taking the diaphragm action into account.	27
1.10.1 Diaphragm action with pin jointed frames	27
1.10.2 Diaphragm action with rigid jointed frames	28
1.10.3 Flexibility of a frame.	29
1.10.4 Principles of diaphragm action with rigid	
jointed frames.	31
1.10.5 Rectangular portal frames .	32
1.10.6 Pitched roof portal frames .	33
Chapter "2"	
Previous works and uses of clad in structures .	
2.1 Introduction.	35
2.2 Bryan and Davies theory.	35
2.2.1 Basic assumptions	36
2.2.2 Diaphragm flexibility	36
2.2.3 Diaphragm strength.	37
2.3 Easley's theory .	38
2.4 Development of Easely's theary.	40
2.5 Types of buildings for stress skin design.	42
2.5.1 Type 1. Diaphragms action alone .	42

2.5.2	Type 2. Diaphragms action in conjuction wit	h rigid
	jointed frames.	42
Chapte	er 3	
3. Fi	nite element method and computer program.	44
3.1 In	troduction.	44
3.2 Pa	nel stiffness matrices.	45
3.3 Or	thotropic rectangular plate element.	46
3.4 De	finitions of caractrastics of orthotropic	
el	ement.	56
3.4.1	Definition of E_{χ} .	56
3.4.2	Definition of E _y .	58
3.4.3	Definition of ${\mathcal F}_{{\mathbf x}{\mathbf y}}$ and ${\mathcal F}_{{\mathbf y}{\mathbf x}}$.	58
3.4.4	Definition of G_{xy} .	60
3.5	Fastener element .	61
3.6	Frame element stiffness.	65
3.6.1	Abstract.	65
3.6.2	Introduction	65
3.6.3	Derivation of the frame element stiffness.	66
3.6.4	Forces corresponding to U_i = Unit.	68
3.6.5	Forces due to $v_i = v_j = Unit$	70
3.7	Sign covention for the clad steel structure	
	program.	77
3.8	Listing of the clad steel structure program	ı
	considering frame depth.	78

Chapter 4

Effect of cladding and frame depth on the analysis of steel structures.

4.1	Introduction	99
4.2	Properties of the one bay structure .	100
4.3	Properties of two bays model.	103
4.4	Effect of frame section depth on the behaviour	r of
	structure.	105
4.4.1	One bay model resuts and discussion.	106
4.4.2	Two bays model results and discussion.	112
4.5	Parametric study of the one bay model consider	ring
	the frame depth effect.	118
4.5.1	Effect of diaphragm stiffness.	118
4.5.1	1 Results and discussion.	119
4.5.2	Effect of spacing between frames.	125
4.5.2	1 Results and discussion.	125
4.5.3	Effect of the relative moment of inertia	130
4.5.3.	1 Results and discuussion.	130
Chapte	r "5"	
Summar	ry and conclusion	136
5.1	Introduction.	136
5.2	Conclusion.	137
5.3	Future work.	138
Refere	ences.	139

List of figures .

Fig.	(1.1)	Stress skin action in pitched roof st	ructure
		carring vertical load.	5
Fig.	(1.2)	Stress skin action in rectangular fra	med
		structure carrying side load.	6
ig.	(1.3.a	a) Sheeting spanning perpendicular to sp	an8
řig.	(1.3.a	a) Sheeting spanning parallel to span.	8
Fig.	(1.4)	Arrangement of individual panel.	11
Fig.	(1.5)	Illustrating profiled metal cladding f	ixed as
		sheeting or deking.	21
Fig.	(1.6)	Profile distortion with alternative fa	stener
		arrangements.	21
Fig.	(1.7)	Diaphragm action in flat roof structure	30
Fig.	(1.8)	Forces in flat roof diaphragm.	30
Fig.	(1.9)	Sway of rectangular and pitched roof.	30
Fig.	(1.10)	Effect of shear force "Q" on hz. displ	acement 34
Fig.	(2.1)	Diaphragm flexibility.	37
Fig.	(3.1)	Type of light gage steel panels.	47
Fig.	(3.2)	Modeling of single panel sheet by equi	valent
		orthotropic plane stress element.	47
Fig.	(3.3)	Actual and equivalent orthotropic elem	ent59
Fig.	(3.4)	Moment of inertia of profile related t	o hz. axis
		passing through the center of gravity.	59
Fig.	(3.5)	Actual and equivalent orthotropic elem	ent59
Fig.	(3.6)	Diaphragm flexibility.	63
Fig.	(3.7)	Finite element simulation of fastener.	63
Fig.	(3.8)	Framing element.	63
Fig.	(3.9)	Positive direction of forces and displa	acements.67

Fig. (3.10) Nodal forces due to $U_1 = U_{11}$ 69
Fig. (3.11) Nodal forces due to $V_{ij} = Unit$ 71
Fig. (3.12) Transformation from local to global73
Fig. (3.13) Flow chart77
rig. (4.1) Dimensions and properties of one bay model. 102
Fig. (4.2) Dimensions and properties of two bays model. 104
Fig. (4.3) Effect of frame section depth on the108
horizontal displacement {A} (Case of one bay)
Fig. (4.4) Effect of frame section depth on the109
beam-column connection mement. [M] (Case of one bay)
Fig. (4.5) Effect of frame section depth on the110
base moment. {M} (Case of one bay).
Fig. (4.6) Effect of frame section depth on the111
base frame reaction.
Fig. (4.7) Effect of frame section depth on the114
horizontal displacement $\{\lambda\}$ (Case of two bays).
Fig. (4.8) Effect of frame section depth on the115
beam-column connection moment {M} (Case of two bays).
Fig. (4.9) Effect of frame section depth on the116
base moment {M} (Case of two bays).
Fig. (4.10) Effect of frame section depth on the117
base frame reaction.
Fig. (4.11) Effect of clad stiffness {K} on the121
horizontal displacement $\{\lambda\}$ (Case of one bay).
Fig. (4.12) Effect of clad stiffness {K} on the base122
bending moment $\{M\}$ (Case of one bay) .
Fig. (4.13) Effect of clad stiffness {K} on the beam123

- column	connection bending moment {M} (Case of one bay)
(4.14)	Effect of clad stiffness {K} on the124
	frame reaction {H} .
4.15)	Effect of frame spacing {S} on the horizontal 126
	$displacement \{\Delta\}.$
(4.16)	Effect of frame spacing {S} on the127
	moment {M} of the beam-column connection
. (4.17)	Effect of frame spacing {8} on the128
	horizontal reaction {H}.
Fig. (4.18)	Effect of frame spacing {s} on the129
	base moment {N}.
Fig.(4.19)	Effect of relative inertia $\{I_b / I_c\}$ on132
	the frame horizontal displacement $\{\Delta\}$.
Fig. (4.20)	Effect of relative inertia {Ib / Ic} on133
	the moment of beam-column connection {M}
Fig. (4.21)	Effect of relative inertia (Ib / Ic)134
	on the base frame reaction {H}.
Fig. (4.22)	Effect of relative inertia {I _b / I _c }135
	on the base handing moment (M)

CHAPPER 1