EVALUATION OF VON WILLEBRAND FACTOR IN NON-INSULIN DEPENDENT DIABETIC PATIENTS WITH AND WITHOUT MICROVASCULAR AND MACROVASCULAR COMPLICATIONS

THESIS
Submitted For The Partial Fulfillment OF
THE MASTER DEGREE IN INTERNAL MEDICINE

By

Maryse Soliman Ayoub

616.462

M.B.,B.Ch.

Supervised by 🍦

53875

Prof. Dr. Omar Fathey Othman

Professor of Internal Medicine Head of Hematology Department Ain Shams University Faculty of Medicine

Ass. Prof. Dr. Abd-El-Rahman Soliman

Assistant Professor of Internal Medicine Ain Shams University Faculty of Medicine

Dr. Manal Hashem Ahmad

Lecturer of Clinical Pathology
Ain Shams University Faculty of Medicine...

Faculty of Medicine AinShams University

CAR Maria

in Marian

EVALUATION OF VON WILLEBRAND FACTOR IN NON-INSULIN DEPENDENT DIABETIC PATIENTS WITH AND WITHOUT MICROVASCULAR AND MACROVASCULAR COMPLICATIONS

THESIS
Submitted For The Partial Fulfillment Of
THE MASTER DEGREE IN INTERNAL MEDICINE

By Maryse Soliman Ayoub M.B.,B.Ch.

Supervised by

Prof. Dr. Omar Fathey Othman

Professor of Internal Medicine Head of Hematology Department Ain Shams University Faculty of Medicine

Ass. Prof. Dr. Abd-El-Rahman Soliman

Assistant Professor of Internal Medicine Ain Shams University Faculty of Medicine

Dr. Manal Hashem Ahmad

Lecturer of Clinical Pathology Ain Shams University Faculty of Medicine

> Faculty of Medicine AinShams University 1997

TABLE OF CONTENTS

INTRODUCTION	ON & AIM OF WORK	1
SECTION I	REVIEW OF LITERATURE	3
Chapter 1	Diabetes Mellitus	3
•	1.A. Definition of DM	3
	1.B. Epidemiology of DM	3
	1.C. Classification of DM	4
	1.D. Clinical classes of DM	6
	Type I:IDDM	6
	Type II: NIDDM	8
	MaInutrition DM	14
	Impaired glucose tolerance	15
	Gestational DM	16
	1.E. Statistical risk classes of DM	17
	1.F Diagnosis & follow-up of DM	18
	1.G. Complications of DM:	21
	*Microvascular Complications	22
	Hematological abnormalities	22
	Microangiopathy;	26
	*Retinopathy	31
	*Nephropathy	38
	*Macrovascular Complications	51
	Cardiac involvement	57
	Cerebral arteries	60
	Peripheral arteries	63
Chapter 2	Endothelial Cell Structure and Function	65
<u>Chapter 3</u>	von-Willebrand Factor	78
	3.A. Domain structure of vWF	79
	3.B. Biosynthesis of vWF	81
	3.C. Storage of vWF	82
	3.D. Control of synthesis of vWF	84
	3.E. Control of secretion of vWF	85
	3.F. Function of vWF	86
SECTION II	PATIENTS AND METHODS	87
	*Patients	87
	*Methods	88
SECTION III	RESULTS	93
SECTION IV	DISCUSSION	120
SECTION V	CONCLUSION AND SUMMERY	126
	REFERENCES	I-XXXI
	ARABIC SUMMERY	

LIST OF FIGURES AND TABLES

	I: FIGURES		
Fig.	Figure title	Page	
No.		ļ	
1	Graphic distribution comparing mean	100	
	levels of vWF among all groups	1	
2	Graph comparison between mean DBP of	102	
	different. groups.		
3	Graphic demonstration of differences of	104	
	mean levels of glycated Hb in different.		
4	groups		
l i	Graphic demonstration of differences of	106	
_	mean levels of FBG in different. groups		
5	Graphic representation of mean	108	
	cholesterol level in all groups	44.0	
6	Graphic representation of mean levels of	110	
! _,	STG in all groups		
/	Graphic representation of mean levels of	112	
	s.HDL in all groups	112	
8	Graphic demonstration of the relation	113	
ا ا	between protienuria & vWF in NIDDM patients	ł	
9	Graphic demonstration of the relation of	114	
	glycated Hb level & vWF	114	
10	Graphic demonstration of the correlation	115	
10	of FBG level & vWF	[1,5]	
71	Graphic demonstration of the correlation	116	
i ''	of cholesterol level & vWF	1 110	
12	Graphic demonstration of the correlation	117	
'2	of STG & vWF] '''	
13		118	
'	of DBP & vWF		
14	Graphic demonstration of the correlation	119	
' '	of s.HDL & vWF		

	II. TABLES		
Table No.	TITLE	Page	
1	Data of group i patients	93	
2	Data of group il patients	94	
3	Data of group III patients	95	
. 4	Data of group IV control subjects	96	
5		97	
6	Mean & SD of vWF in all groups	98	
7	Comparison between mean DBP of all groups	101	
8	Comparison between mean levels among		
	diabetic groups	103	
9	Comparison between mean FBG of all groups	105	
10	Comparison between mean cholesterol levels		
	of all groups	107	
11	Comparison between mean STG of all groups	109	
12	Comparison between mean s.HDL of all		
	groups	111	
13	Correlation between vWF & level of		
	protienuria	113	
14	Correlation between vWF & level of glycated		
	Hb	114	
	Correlation between vWF & FBG level	115	
16	Correlation between vWF & s. cholesterol		
	level	116	
	Correlation between vWF & level of STG	117	
	Correlation between vWF & DBP	118	
19	Correlation between vWF & s.HDL	119	

ě

LIST OF ABBREVIATIONS

von-Willebrand factor
diastolic blood pressure
hemoglobin
fasting blood glucose
serum triglycerides
high density lipoproteins
insulin dependent diabetes mellitus
non-insulin dependent diabetes
mellitus

ACKNOWLEDGMENT

I have been honored to have professor Dr. Omar Fathey, professor of Internal Medicine, and head of Hematology Oncology unit, at Ain-Shams University, to be my supervisor, he has been of utmost supreme guidance to me, starting from the choice of the work I was to carry out, throughout the period of the practical work providing me with priceless information, reflecting his huge magnitude of knowledge, which he offered so humbly.

Assistant professor Dr. Abd-el-Rahman Soliman, the assistant professor of Internal Medicine at Ain-Shams University, has given me much of his worthy time in guiding, following, correcting, and finally revising my work, words could not be enough to thank him.

Dr. Manal Hashem, the lecturer at the Clinical Pathology department, has accepted very willingly, and very patiently to aid in carrying-out the practical part of my work, and aided me much in interpreting the results obtained.

At last, but by far least, I would like to thank all my colleagues and friends who have withstanded my enthusiasm in order to complete my work.

Maryse Soliman Ayoub

TO GOD the one before all and after all

TO MY FAMILY

which has tolerated me much, with love and kindness

MIRODUCTOZ

TOW FO MOST

<u>INTRODUCTION</u> AND AIM OF THE WORK

INTRODUCTION;

In diabetic patients, microalbuminuria predicts not only development of diabetic nephropathy, but also of retinopathy, neuropathy, hypertension, and macrovascular disease [Jensen, 1991].

Microalbuminuria is purposed to be a marker of wide-spread vascular damage, which may underlie the propensity of microalbuminuric patients to develop extrarenal vascular disease [Decket et al., 1989].

The endothelium is an important locus for control of vascular functions. It actively regulates vascular tone and permeability, the balance between coagulation and fibrinolysis, the composition of subendothelial matrix, and mitogenesis of vascular smooth muscles and mesangeal cells [Van et al., 1990].

In patients with microalbuminuria, the vascular endothelium tends to increase vascular resistance, and fails to restrict passage of macromolecules, thus microalbuminuria reflects an increase in transcapillary passage of these macromolecules [Collier et al., 1992].

Von-Willebrand factor is a glycoprotein involved in primary hemostasis, and is secreted mainly by endothelial cells. It was first described in a bleeding disorder, and later was viewed to have a role in the pathogenesis of atherosclerosis and in thrombus formation. Just as low levels predispose to disease, high levels may lead to adverse cardiovascular events, such as myocardial infarction, and femoral artery occlusion, which may both be precipitated by thrombus formation [Blann, 1993].

AIM OF THE WORK:

The aim of the current study is to asses levels of von-Willebrand factor in non-insulin dependent diabetic patients, with and without microalbuminuria (as a marker of microvascular disease), and cardiovascular complications (as a marker of macroangiopathy), which may allow recognition of high risk patients.

RUNEW OF LITTER TO

<u>SECTION I</u> REVIEW OF LITERATURE

CHAPTER 1

DIABETES MELLITUS

1.A. Definition of Diabetes Mellitus

Diabetes Mellitus [DM] is a heterogenous primary disorder of carbohydrate metabolism, with multiple etiologic factors that generally involve absolute or relative insulin deficiency, or insulin resistance, or both. All causes of DM ultimately lead to hyperglycemia, which is the hallmark of this disease syndrome [Olfsky et al., 1993].

Diabetes constitutes a major public health issue, due to the sheer number of patients number of patients affected and to the risk of associated diseases specially affecting cardiovascular, renal, and nervous systems [Assal and Golay, 1994].

1.B. Cpidemiology of Diabetes Mellitus

The definition and general acceptance of precise diagnostic criteria for diabetes mellitus by the WHO in 1995 permitted standardized estimates of the worldwide prevalence of the disease.

Non-insulin dependent diabetes mellitus (NIDDM), is the commonest form of diabetes with prevalence of 3-4% of the entire population, varying widely from country to country, reaching approximately 1% in Japan and China, versus 35% in Pima Indians of Arizona and Nauru of Micronesia [Papoz and Eschwege, 1990].

The prevalence of insulin dependent diabetes mellitus (IDDM) is more accurate because of the abrupt symptoms, while in fact many patients with NIDDM are asymptomatic, and remain undiagnosed [Zimmet, 1992].

1.C. Classification of PM

The widely accepted classification of DM recommended by the 1985 WHO study group, was based primarily on clinical descriptive criteria, and its retention is recommended for the present. The classification includes a number of clinical classes and designated statistical risk classes. This is demonstrated in the following table.