REFINING OF LUBE OILS BASE FOR THE MANUFACTURE OF WHITE OILS

M. Sc. THESIS.

Thesis Advisors

1. Dr. Khalid Elewa Hashem

2. Prof. Dr. Samir El. Badrawey

3. Prof. Dr. Sara Mikhail

Approved

Prof. Dr. A. M. Rabie

Head of Chemistry Department

Faculty of Science

Ain Shams University

NOTES

This is to cerity that Mis. Mary Riad Eskander, has attended and passed successfully the following post graduate courses as a partial fulfilment of the requirements of the degree of Master of Science, during the academic year 1989.

COURSES

- 1. Reaction Kinetics
- 2. Thermodynamics
- 3. Surface Chemistry
- 4. Catalysis
- 5. Physical properties of polymers
- 6. Computer Science
- 7. Cement Chemistry
- 8. Quantum Chemistry
- 9. Electro-Chemistry
- 10. Corrosion
- 11. English language

Prof. Dr. A. M. Rabie

Head of Chemistry Department

Faculty of Science

Ain Shams University

ACKNOWLEDGEMENT

The author wishes to express her sincere appreciation and deep gratitude to *Dr. K.M.E. Hashem* Associate Prof. of Physical Chmistry, Faculty of science, Ain Shams University, for his support and valuable guidance throughout this work.

I would like to submit my great thanks to **Prof. Dr. Samir El-Badrawey**, Head of chemical Refining laboratory in Petroleum

Refining Department, (EPRI), for suggesting the subject of this work, his sincere efforts, constant support and talented supervision throughtout this work.

I am indebted to **Prof. Dr. Sara Mikhail**, Prof. in Petroleum Refining Department (EPRI), for her sincere efforts, devotion, constant support, talented supervision and for the valuable discussion.

Thanks are also due to **Egyptian Petrolum Research Institute** for providing facilities in the **Refining Department**where this research work was undertaken.

CONTENTS

				Page
SUM	IMARY			I
INTE	RODUCTI	ON		III
AIM	OF THE	PRE	SEYT WORK	VI
CHA	APTER 1	L		
LITE	RATURE	SUF	WEY	1
1.1.	History	of wł	nite oils	1
1.2.	1.2. Production of white Oils			3
	1.2.1	Cala	alytic Hydrogenation	3
		A	One stage Hydrogenation	4
		B	Two stages Hydrogenation	5
		C.	Three stages Hydrogenation	6
	1.2.2.	Ext	raction Technique.	7
	1.2.3.	Acid	l-Refining	8
	A.	Sulf	furic Acid Refining	9
	B.	Oleu	um Refining	10
1.3.	Clay Mir	neral	s	14
	1.3.1.	Stru	acture of Montmorillonite	16
1.4.	Uses of	white	e Oils	19
CHA	PTER I	I		
EXP	DRIMBN	CAL		20
2.1.	Feed sto	ocks		20
2.2.	Oleum I	Refin	ing	23
	2.2.1.	Tem	perature	2 3
	2.2.2.	Amo	ount of Acid	2 3
	223	Tim	e of Mixing	24

2.3.	Exper	imental Technique	24
	- (lay Finishing	25
	- F	reparation of Activated Local Clay	25
2.4.	Analy	cical Technique	26
	2.4.1.	Physical Characteristics	26
	2.4.2.	Structural Group Analysis	27
	2.4.3	Components Analysis	28
	-	Chromatographic Separation Over silica	
		Gel Columun.	28
	-	Ultraviolt Absorption Spectroscopic Analysis	29
CHA	PTER	m.	
RES	ULTS A	ND DISCUSSION	32
3.1.	Treat	ment With Concentrated Sulfuric Acid	32
3.2.	Treatr	nent With Oleum	36
	3.2.1	Light Lube Oil Base 90/110	37
	P	Effect of Added Oleum	37
	E	Effect of Contact time of Mixing	46
	C	Effect of Reaction Temperatures	50
	3.2.2	Middle Oil Base (140/160)	79
	A	Effect of Oleum Amounts at Reaction	
		Temperature 25°C.	79
	E	Effect of Oleum Amounts at Reaction	
		Temperature 35°C.	80
	3.3.3	Heavy Oil Base (260/290)	90
CON	CLUSIC	N	109
RDD	RENC	©S	113

LIST OF TABLES

		Page
Table 1.	Physical Characteristics and Carbon Distribution	
	of Light, Middle and Heavy oils Base	21
Table 2.	Distribution of Components in Light, Middle and	
	Heavy Oils Base.	22
Tabele 3.	Effect of concentrated suffuric Acid on the	
	Distribution of Components of Heavy Oil Base	
	Treated at reactionTemperature 25°C	34
Table 4.	Effect of Concentrated Sulfuric Acid on physical	
	characteristics and Distribution of aromatic carbon	
	(% CA) of Heavy Oil Base Treated at Reaction	
	Temperature 25°C.	35
Table 5.	Effect of Amount of Oleum (2 Wt% and their	
	multiplication) on the Physical Characteristics,	
	Carbon Distribution and Components of Treated	
	Light Oil Base at Reaction Temperature, 30°C	39
Table 6.	Effect of Amount of Oleum (5 wt% and their	
	multiplication) On the physical characteristics,	
	Carbon Distribution and Components of Treated	
	Light Oil Base at Reaction Temperature, 30°C	40

Table 7.	Effect of Amount of Oleum (10 wt% and their
	multiplication) on the physical characteristics,
	Carbon Distribution and Components of Treated
	Light Oil Base at Reaction Temperature, 30°C 41
Table 8.	Effect of Stirring Time on the Physical
	Characteristics and Carbon Distribution of Treated
	Light oil Base with 5 wt% Oleum and at reaction
	Temperature, 30°C 48
Table 9.	Effect of Reaction Temperatures on the physical
	Characteristics and Carbon Distribution of Treated
	Light Oil Base with Different Amounts of Oleum 54
Table 10.	Effect of Reaction Temperatures on the
	Distribution of Components at Different Amounts of
	Oleum
Table 11.	Effect of Reaction Temperatures on the Physical
	Characteristics and Carbon Distribution at Different
	Amounts of Oleum 60
Table 12.	Effect of Reaction Temperatures on the Distribution
	of the Components at Different Amounts of
	Oleum
Table 13.	Comparison of % CA calculated by Brandes Method
	and DIN 51378 Method of Trated Light Oil Base68

Table 14.	Effect of Amounts of Oleum on Aniline Point	
	of Treated Light Oil Base at 25°C.	70
Table 15.	Effect of Amounts of Oleum on Sulfur Contents wt %)
	and Color of Treated Light Oil Base at 25°C	70
Table 16.	Physical characteristics and Carbon Distribution	
	of Treated Light Oil Base with 40 wt% Oleum at	
	25°C and Clay Finished by Contact and Percolation	
	Methods.	74
Table 17.	Distribution of the Components of Light Oil Base	
	After Treatment with 40 wt% Oleum at 25°C and	
	Clay Finished by Contact and Percolation Methods,	75
Table 18.	Effect of Amounts of Oleum on the Physical	
	Characteristics and Carbon Distribution of Treated	
	Middle Oil Base at 25°C.	82
Table 19.	Effect of Amounts of Oleum on the Distribution	
	of the Components of Treated Middle Oil Base	
	at 25°C	83
Table 20.	Effect of Amounts of Oleum on the physical	
	Characteristics and Carbon Distribution of	
	Treated Middle Oil Base at 35°C.	84

Table 21.	Effect of Amounts of Oleum on the Distribution
	of the Components of Treated Middle Oil
	Base at 35°C
Table 22.	Effect of Amounts of Oleum on Aniline Point of
	Treated Middle Oil Base at 25°C 86
Table 23.	Effect of Amounts of oleum on Sulfur Contents
	wt % of Treated Middle Oil Base at 25°C 86
Table 24.	Effect of Amounts of Oleum on the physical
	Characteristics and Carbon Distribution of Treated
	Heavey Oil Base at 25°C
Table 25.	Effect of Amounts of Oleum on the Distribution of the
	Component of Treated Heavy Oil Base at 25°C 93
Table 26.	Effect of Amounts of Oleum on the Physical
	Characteristics and Carbon Distribution of
	Treated Heavy Oil Base at 35°C
Table 27.	Effect of Amounts of Oleum on the Distribution of
	the Components of Treated Heavy Oil Base at 35°C 95
Table 28.	Effect of Amounts of Oleum on Aniline Point
	of Treated Heavy Oil Base at 25°C
Table 29.	Effect of Amounts of Oleum on Sulfur Contents
	wt % of Treated Heavy Oil Base at 25°C 96
Table 30.	Pharmacompeia Tests for Identification and
	Testing the Medicinal White Oil106

LIST. OF FIGURES

		Page
Fig. 1.	Diagrammatic Sketch Showing	
	a) Single Octahedral Unit and	17
	b) The Sheet Structure of the Octahedral Units	17
Fig. 2.	Diagrammatic Sketch Showing.	
	a) Single Silica Teterahedron and	17
	b) Sheet Structure of Silica teterahedrons	
	arranged in a hexagonal network	17
Fig. 3.	Diagrammatic Sketch of The Structure of the	
	Montmorillonite	18
Fig. 4.	Effect of Amount of Oleum (2, 5, 10wt% and	
	their multiplications) on Refractive Index and	
	Density at 30°C and 1hr. Time of Mixing	42
Fig. 5.	Effect of Amount of Oleum (2, 5, 10wt% and	
	their multiplications) on the Contents of	
	Aromatics and Saturates at 30°C and 1hr.	
	Time of Mixing	43
Fig. 6.	Effect of Amount of Oleum (2, 5, 10wt% and	
	their multiplications) on the Distribution of	
	Total Aromatics at 30°C and 1hr. Time of Mixing	44
Fig. 7.	Effect of Amount of Oleum (2, 5, 10wt% and	
	their multiplications) on the Percent of Carbon	
	Atoms Distributio at 30°C and 1hr. Time of Mixing	45

Fig.	8.	Effect of Stirring Time on the Refractive Index	
		and Density of the Produced Oil at 30°C	49
Fig.	9.	Effect of Stirring Time on Carbon Atoms	
		Distribution at 30°C	49
Fig.	10.	Effect of Reaction Temperatures on the Viscosity	
		Gravity Constant (V G C), Viscosity Index (V.I.),	
		Refractive Index (n_D^{20}) and Density (d_4^{20}) of	
		the Produced Oils	55
Fig.	11.	Effect of Reaction Temperatures on the Contents	
		of Aromatics and Saturates at Different Oleum	
		Amounts	57
Fig.	12.	Effect of Reaction Temperatures on the Distribution	
		of Total Aromatics at Different Oleum Amounts	58
Fig.	13.	Effect of Reaction Temperatures on the Percent of	
		Carbon Atoms Distribution at Different Oleum	
		Amounts	59
Fig.	14.	Effect of Reaction Temperatures on the Refractive	
		Index and Density at Different Oleum Amounts	62
Fig.	15.	Effect of Reaction Temperatures on the Viscosity	
		Gravity Constant and Vescosity Index at Different	
		Oleum Amounts	63
Fig.	16.	Effect of Reaction Temperatures on the Contents	
		of Aromatics and Saturates at Different Oleum	
		Amounts	64
Fig.	17.	Effect of Reaction Temperatures on the Distribution	
		of Total Aromatics at Different Oleum Amounts	65

Fig. 18.	Effect of Reaction Temperatures on the Percent of	
	Carbon Atoms Distribution at Different Oleum	
	Amounts	66
Fig. 19.	Change of Aniline Point with	
	a) Amount of Oleum and	71
	b) Saturates wt% at Reaction Temperature 25°C	71
Fig. 20.	Effect of Amount of Oleum on the rate of	
	Desulphurization of treated light oil base at 25°C	71
Fig. 21.	Effect of Amount of Oleum on the Refractive Index	
	and Density of Treated Middle Oil Base at 25°C	
	and 35℃	87
Fig. 22.	Effect of Amount of Oleum on the Viscosity Index	
	and Viscosity Gravity Constant at 25°C and 35°C	88
Fig. 23.	Change of Aniline Point with	
	a) Amount of Oleum and	89
	b) Saturates wt% at ReactionTemperature 25°C	89
Fig. 24.	Effect of Amount of Oleum on the rate of	
	Desulphurization of Treated middle Oil Base at 25°C .	89
Fig. 25.	Effect of Amount of Oleum on the Density and	
	the Refractive Index of Treated Heavy Oil Base	
	at 25°C and 35°C	97
Fig. 26.	Effect of Amount of Oleum on the Viscosity Index	
	and Viscosity Gravity Constant at 25°C and 35°C	98
Fig. 27.	Change of Aniline Point with	
	a) Amount of Oleum and	99
	b) Saturates wt% at ReactionTemperature 25°C	99

Fig. 28.	Effect of Amount of Oleum on the Rate of	
	Desulphurization of Treated Heavy Oil Base	
	at 25°C	99
Fig. 29.	Distribution of the Components of the Three	
	Treated Oils Base at 25°C	103
Fig. 30.	Change of Aniline Points of the Three Treated	
	Oils Base with	
	a) Amount of Oleum and	104
	b) Saturates wt% at 25°C	104
Fig. 31.	Comparison of the Rate of Desulphurization of the	
	Three Treated Oils Base at 25°C	104
Fig. 32.	Change of Aniline Points with Viscosity at 40°C	
	and Viscosity Index for the Refined Oils of the	
	Three Treated Oils Base	105

:

.

SUMMARY