

Evaluation Of Some Optical Properties and Color Reproduction Of Translucent Zirconium Oxide Ceramic Before and After Aging Using Three Different Shades Of Resin Cement.

A thesis submitted for the partial fulfillment of the Masters Degree requirements in Fixed Prosthodontics, Faculty of Dentistry,

Ain Shams University.

By

Omar Hussein Mohammed Abd-El-Bary

B.D.Sc. Faculty of Dentistry Ain Shams University, 2003

> Faculty of Dentistry Ain Shams University 2015

Supervised By

Dr. Tarek Salah Morsy

Assistant Professor of Fixed Prosthodontics, Ain Shams University.

Dr. Ashraf Hussein Sherif

Professor of fixed prosthodontics, Cairo University.

Dr. Marwa Mohamed Wahsh

Lecturer of fixed prosthodontics,
Ain Shams University.

بسم الله الرحمن الرحيم

{وقالوا سبحانك لا علم لنا إلا ما علمتنا انك أنت العليم الحكيم}

صدق الله العظيم

سورة البقرة {32}

Acknowledgement

I am greatly honored to express my thanks and deep gratitude to **Dr. Tarek Salah Morsi**, Assistant Professor of Fixed Prosthodontics and Head of Crown and Bridge Department, Ain Shams University, for his valuable guidance and support throughout this work. I benefited greatly from his experience and knowledge.

I would like to express my deepest gratitude to **Dr. Ashraf Hussein Sherif**, Professor of Fixed Prosthodontics, Cairo
University, for his meticulous advice and valuable comments.

I would like to express my deepest gratitude to **Dr. Marwa Mohamed Wahsh**, Lecturer of Fixed Prosthodontics, Ain Shams
University, for her meticulous advice and valuable comments.

Special thanks to **Dr. Mostafa Aboushelieb**, Assistant Professor of Fixed Prosthodontics, Alexandria University), for his great efforts.

Finally, I would like to thank all staff members of fixed prosthodontics department, Future University for their help and encouragement during the course of this work.

To the soul of my father

To my daughter

To my mother, my wife, and my brother

LIST OF CONTENTS

List of Tables	ii
List of figures	iv
Introduction	1
Review of literature	4
Aim of study	37
Materials and Methods	38
Results	65
Discussion	108
Summary and Conclusion	121
References	124
Arabic Summary	

LIST OF TABLES

Table no.	Title	Page no.
1	The Materials, Brands, and Manufactures used in this study	38
2	Chemical composition of InCoris TZI blocks	39
3	Technical data of InCoris TZI blocks	39
4	Chemical composition of IPS Empress CAD Blocks	40
5	Technical data of IPS Empress CAD Blocks	40
6	Chemical composition of variolink veneer (in weight %)	41
7	Technical specification of variolink veneer	41
8	Interacting variables	44
9	Experimental Factorial Design	44
10	Repeated measures ANOVA results for the effect of different variables on mean (ΔE)	66
11	Repeated measures ANOVA results for the effect of different variables on mean (ΔE).(aging)	66
12	Effect of changes in material on ΔE	67
13	Effect of changes in thickness on ΔE	68
14	Effect of changes in cement value on ΔE	69
15	Effect of aging on ΔE	70
16	Effect of thickness and cement on ΔE before aging using zirconia	71
17	Effect of thickness and cement on ΔE after aging using zirconia	73
18	Effect of thickness and cement on ΔE after before using CAD LT	75
19	Effect of thickness and cement on ΔE after aging using CAD LT	77
20	Effect of thickness and cement on ΔE after before using CAD HT	79

Table no.	Title	Page no.
21	Effect of thickness and cement on ΔE after aging using CAD HT	81
22	Effect of material and aging on ΔE within each thickness using low value resin cement	83
23	Effect of material and aging on ΔE within each using medium value resin cement	85
24	Effect of material and aging on ΔE within each using high value resin cement	87
25	Repeated measures ANOVA results for the effect of different variables on mean TP(Aging)	90
26	Repeated measures ANOVA results for the effect of different variables on mean TP	91
27	Effect of changes in material on TP	91
28	Effect of changes in thickness on TP	92
29	Effect of aging on TP	93
30	Effect of material on TP within each thickness before and after aging	94
31	Effect of aging on TP of each material within each thickness	96
32	Repeated measures ANOVA results for the effect of different variables on mean OP.(aging)	99
33	Repeated measures ANOVA results for the effect of different variables on mean OP.(aging)	99
34	Effect of changes in material on OP	100
35	Effect of changes in thickness on OP	101
36	Effect of aging on OP	102
37	Effect of material on OP within each thickness before and after aging	103
38	Effect of aging on OP of each material within each thickness	105

LIST OF figures

Fig. no.	Title	Page no.
1	InCoris TZI block	39
2	IPS Empress CAD block	40
3	Variolink veneer light cure resin cement	41
4	IPS Natural Die Material ND2	42
5	Micracut precision cutting machine	46
6	Buehler diamond coated precision cutting disc	46
7	The built-in digital micrometer	47
8	Verified thickness with digital caliper	47
9	Sirona InCoris TZI coloring liquid	48
10	Sintering boat showing zirconia slices on sintering beads	49
11	Sirona infire HTC speed furnace	49
12	K0262 Dialite ZR Intra-Oral adjustment finishing and polishing system	50
13	Zi-Polish paste with Wheel Brush Rod	51
14	polishing of zirconia slice under constant water coolant	51
15	Zi-polish diamond polishing paste applied with wheel brush Rodeo	51
16	Slicing of IPS empress cad blocks using diamond coated disc	52
17	Jota ceramic polishing kit	53
18	polishing of Empress CAD slice	53
19	Assembled stainless steel mold	54
20	Stainless steel mold dissembled (A) base and (B) cap showing the counter mold	55
21	Stainless steel mold base showing (arrow) the 70 microns elevation for cement space	55
22	2D Diagram of the base of stainless steel mold	56

Fig.	Title	Page no.
23	3D Diagram of the base of stainless steel mold	56
24	2D diagram of base of stainless steel mold	57
25	3D base diagram of cap of stainless steel mold	57
26	Curing of natural die material in the stainless steel mold through glass slab	58
27	Natural die material substrate (arrow) showing cement space	59
28	vita easy shade compact	60
29	Ceramic specimens against ND substrate with cement	62
30	Ceramic specimens against white back ground	63
31	Ceramic specimens against black background	63
32	Ceramic specimens against black and white background	63
33	samples inside autoclave	64
34	Bar chart representing mean ΔE with different materials	67
35	Bar chart representing mean ΔE with different thicknesses	68
36	Bar chart representing mean ΔE with different cement values	69
37	Bar chart representing mean ΔE before and after aging	70
38	Bar chart representing mean (ΔE) of each thickness and cement before aging using zirconia	71
39	Bar chart representing mean (ΔE) of each thickness and cement after aging using zirconia	75
40	Bar chart representing mean (ΔE) of each thickness and cement before aging using CAD LT	77
41	Bar chart representing mean (ΔE) of each thickness and cement after aging using CAD LT	79
42	Bar chart representing mean (ΔE) of each thickness and cement before aging using CAD HT	81
43	Bar chart representing mean (ΔE) of each thickness and cement after aging using CAD HT	83

Fig.	Title	Page no.
44	Bar chart representing mean ΔE of each material within each thickness using low value resin cement	85
45	Bar chart representing mean ΔE of each material within each thickness using mediun value resin cement	87
46	Bar chart representing mean ΔE of each material within each thickness using high value resin cement	89
47	Bar chart representing mean TP with different materials	92
48	Bar chart representing mean TP with different thicknesses	93
49	Bar chart representing mean TP with before and after aging	94
50	Bar chart representing mean TP of each material within each thickness before and after aging	96
51	Bar chart representing mean TP before and after aging of each material within each thickness	98
52	Bar chart representing mean OP with different materials	100
53	Bar chart representing mean OP with different thicknesses	101
54	Bar chart representing mean OP before and after aging	102
55	Bar chart representing mean OP of each material within each thickness before and after aging	104
56	Bar chart representing mean OP before and after aging of each material within	107

Introduction

INTRODUCTION

In the last thirty years there was dramatical increase in patients' demands for superior esthetics and naturally appearing restorations. The demand to achieve a natural looking restoration is one of the most challenging aspects in dentistry. Successful aesthetic restorations require the integration of several factors as the individual's perception of color, the light source used for color evaluation, the surface and structural characteristics of both the tooth and the restorative materials used and knowledge of some basic principles of color perception. (1)

The apparent color of natural teeth is the result of the reflectance from dentin modified by absorption, scattering and thickness of enamel. Therefore, understanding of the optical properties of teeth is imperative for accurate and consistent color reproduction ⁽²⁾. Color and its elements such as hue, value, chroma, translucency, opacity, light transmission, scattering, metamerism and fluorescence influence the esthetics of a dental restoration. The eye is able to distinguish easily between a natural tooth and an artificial one, even when there are minute differences in color and translucency where color and translucency are highly correlated properties of a ceramic crown. ^(3, 4)

Color matching of teeth is recorded through visual shade matching using commercially available shade guides or through instrumental color analysis. Commercially available shade guides contain a limited selection of colors when compared to those found in natural teeth and visual shade matching is affected by many external variables. Conversely, color measuring devices are efficacious to quantify natural tooth color and allow communication between technicians and dentists to be more uniform and accurate. (5, 6)

Dental ceramics with their properties of wear resistance, strength, toughness and esthetics are considered the preferred material to replace natural tooth tissue in prosthetic dentistry. (1) To meet the increased demands of patients and dentists for highly esthetic, biocompatible, and long-lasting restorations, several types of all ceramic systems have been developed. (7)

Leucite-based glass ceramics have generated considerable interest given their adequate strength properties, integration with the tooth structure from the bonding mechanism, and excellent esthetic features. The color of the heat-pressed ceramic restoration can be modified to match that of the natural tooth. Currently, a machinable version of the leucite-based ceramic blocks with different levels of translucency and shade are in use. (8)

Because of advances in computer aided design (CAD) and computer aided manufacturing (CAM) technologies; the high-strength ceramic systems have become increasingly popular. Zirconia, specifically yttria-containing tetragonal zirconia polycrystal (Y-TZP), with unsurpassed mechanical properties, has had its clinical applications expanded from single crowns and short-span FDPs to multiunit and full arch zirconia frameworks. As zirconia is relatively opaque and monochromatic in color, a layer of veneering ceramic is built on it to provide the restoration with the required esthetics. (9, 10)

In clinical service, the most frequent failure is the chipping of the veneer, while the high-strength zirconia substructure is mostly not affected. (11, 12) In specific clinical situations, such as when the occlusal or palatal space is limited or in cases where a patient's Para-functional activity (e.g., bruxism) may contraindicate this veneering application the use of unveneered zirconia ceramic seems to be an option for all-ceramic restorations. (13)

Recently nano-zirconia was introduced which allows the use of full contour zirconia restorations without the need for any veneering ceramic. These restorations were able to attract increasing attention because of their unique combination of optical and mechanical properties. (14) However its optical properties and color reproducibility remain in question.