
IMPROVING LEGUME PRODUCTIVITY BY MAXIMIZING THE EFFICIENCY OF MYCORRHIZAL RHIZOBIAL INTERACTION

Ву

MAGDY ATTIA MOHAMED

B. Sc. (Agric. Microbiol.), 1979

AIN SHAMS UNIVERSITY

THESIS

SUBMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

IN

Agricultural Microbiology

Agricultural Microbiology Dept.
FACULTY OF AGRICULTURE
AIN SHAMS UNIVERSITY

1987

APPROVAL SHILE!

Name : Magdy Attia Mohamed

Subject: Improving legume productivity by maximizing the

efficiency of mycorrhizal rhizobial interaction

Degree : M. Sc.

Approved by:

Prof. Dr. 1919,)
Prof. Dr. M. El-Kaddad

(Committe in Charge)

Date: / /1987.

ACKNOWLEDGMENT

The author would like to express his appreciation and gratitude to Prof. Dr. Y.Z.Ishac, Professor of Agricultural Microbiology, Director of the Unit of Biofertilizers Faculty of Agriculture, University of Ain Shams, and to Dr. S.M.S.Badr El-Din ,Assoc. Prof. of Soil Microbiology, National Research Centre for supervising the work and revising text as well as for their encouragement ,valuable advice and stimulating criticism.

Special thanks are extended to Dr.Wedad Eweda, Lecturer of Agric.Microbiolgy, Faculty of Agric.Ain Shams University for supervising the early part of the work.

The author wishes to express his deepest appreciation to Prof. Dr. H. Moawad, Prof. of Soil Microbiology at the National Research Centre for his valuable help, and reading the manuscript.

Thanks are due to the authorities of the National Research Centre , to carry out this work in the Soil Laboratory.

CONTENTS

INTRODUCT	
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Occurrence of VA Mycorrhizae	
2. Factors Affecting the Development of	3
Mycorrhizae,	4.5
2.1.Light	13 13
2.2.Soil Factors	14
2.2.1. Chemical	14
2.2.1.a. Nutrients	
2.2.1.b. pH	1 4
	17
2.2.1.c. Metals	19
2.2.1.d. Salinity	20
2.2.1.e. Organic matter	21
2.2.2. Physical Factors	23
2.2.2.a. Water	
2.2.2.b. Temperature	23
	25
2.2.2.c. Aeration	27
3. Effect of Rhizobia and VA Mycorrhizae	
on Legumes Growth and Productivity	28
3.1. Response to inoculation with Rhizobium	28
3.2. Growth response to inoculation with	20
VA mycorrhizae	
4. Role of the Microsymbionts Rhizobia	30
and VA Mycorrhizae in Nutrients Uptake	
and Water Absorption by Legumes	38

4.1.	Role of VA mycorrhizae in phospherus uptake	
	by legumes	38
4.2.	Role of VAM in micronutrients uptake by le-	
	gumes	40
4.3.	Role of VAM in water absorption	41
	Role of rhizobia in nitrogen nutrition of	41
	legume	4.0
5.	Relation Between Nitrogen Fixation, Phosph-	42
	orus and Micronutrients Uptake by Legumes	
	Effect of VAM on Nodulation and N ₂ Fixation.	44
	2 rixation.	47
MATER	TAIS AND METHODS	
	IALS AND METHODS	49
	Materials	49
	Soil and plant samples	49
	Inocula used	50
	.Mycorrhizal inoculants	50
1.2.2	.Rhizobial inoculants	50
1.3.	Nutrient solutions	51
2.	Methods of inoculation	51
3.	Experimental methods	52
3.1.		٠ <u>٠</u>
	leguminosarum and Glomus spp on growth and	
	nodulation of faba bean plants in phosphate	
	deficient soils	
3.2.	Improving the response of faba bean plants	52
	to dual inoculation with Rhizobium leguminosarum and Glomus spp.by maize stalks application	-
	and dromus SPP.Dy Malze Stalks application	

3.3. Response of soybean to dual inoculation	
with VA mycorrhizal fungi and Bradyrhiz-	
obium japonicum	53
4. Microbiological methods	54
4.1. Extraction and estimation of VA mycorrh-	34
izal spores	5 4
4.2. Estimation of mycorrhizal root infection	55
4.3. Soil infectivity with endomycorrhizae.	56
4.4. Enumeration of R. leguminosarum in soils	57
5. Dry matter contents	
6. Chemical methods	57
6.1. Nitrogen content in plant and soil	57
6.2. Total phosphorus in soil and plants	57
6.3. Available phosphorus in soil	58
	59
6.4. Exchangeable sodium percent	59
6,.5. Micronutrients contents in plant	59
66. Soil organic carbon	59
5.7. Soil pH	60
5.8. Electrical conductivity of soils	60
5.9. Calcium carbonate content in soils	6 0
. Mechanical anaylsis of soils	60
RESULTS AND DISCUSSION	61
1. Distribution and density of VA mycorrhizae	0 7
and Rhizobium leguminosarum associated	
with faba bean grown in major Egyptian	
soils	<i>c</i>
	61

2.	Effect of dual inoculation with R. leguminosar	`um
	and Glomus spp. on growth and nodulation	
	of faba bean plants in phosphate defic+:	
	ient soils.	67
3.	Improving the response of faba bean plants	0,
	to dual inoculation with R . leguminosarum	
	and Glomus spp by maize stalks application.	73
4.	Response of soybean to dual inoculation	, ,
	with vesicular-arbuscular mycorrhizal	
	fungi and Bradyrhizohium ianoneiu-	78
		
SUMMA	RY AND CONCLUSIONS	8 7
REFER	FNCES	96
	C. SHMMARY	-

INTRODUCTION

1

The symbiotic relation between higher plants and soil microorganisms represents one of the most striking biological phenomena. The classical example of this type of the symbiotic relations is the well known one between Rhizobium and legumes which produces enough nitrogen to support the building of the whole protein requirements of the legumes.

Recently, the mycorrhizal fungi particularly the endomycorrhizae, have recieved considerable attention by the microbiologists, specially for leguminous plants because VA mycorrhizae affects nitrogen fixation indirectly by its action on P uptake, increased uptake of zinc and copper ions, levels of chlorophyll and some hormones in plants.

The use of symbionts is more economical and much better than the use of chemical fertilizers which has already raised serious objections and real concern about the pollution of the environment. Thus, greater attention has been directed to the use of microorganisms as biofertlizers, to provide nutrients for higher plants without any pollution to the environment.

Despite the very comprehensive scientific publications on the symbiotic relations of the triparite system, plant-rhizobia-mycorrhizae, is still a lot more to be done for better understanding of the different aspects of these systems. However, the information on the interaction between VA mycorrhizal fungi and Rhizobium has yet to be clarified.

Little work has been done on the VA mycorrhizal status of Egyptian soils and whether this endophyte can enhance plant growth (Edrees, 1982; Fawaz et al. 1983; Mahmoud et al. 1985 b; Fares, 1986).

The present work aims to study the occurence of VA mycorrhizal fungi and their interaction with Rhizobium leguminosarum in Egyptian soils. The growth response of some legumes to dual inoculation with VA mycorrhizal fungi and Rhizobium has been also investigated in greenhouse and field experiments.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

1. Occurrence of VA Mycorrhizae:

With few exceptions, VA mycorrhizae are found in all soil types. North temperate podzols, very wet soils, and highly disturbed soils, such as coal spoils, may support relatively few natural infections by mycorrhizae (Hayman, 1982 a). Other soil types present in grasslands, muck farms, rain forests, sand dunes and arid regions support variable levels of VA mycorrhizae.

In cultivated areas, VA mycorrhizae are affected by the various soil, plant and environmental factors as well as by the agricultural and horticultural practices. Most crop species can become mycorrhizal. In southern Spain, Hayman et al.(1976) found that maize, Phaseolus beans and grapevine were consistently heavily mycorrhizal, olives were variable, and tomatoes consistently fairly lightly infected ewen when present at the same sites as the first three. In mixed cropping infection in the host plant wheat was reduced by the non-host mustard (Iqbal and Qureshi, 1976).

According to Butler's review (1939), VAM root infections may be more abundant in orchard and plantation crops than in annual field crops. However, Hayman (1978) indicated that more VAM spores could be found in the latter.

This may be explained by selection pressures on a mixed VAM population that favour those endophytes able to survive as spores the follow periods between crops and at least a year with a non-host crop (Hayman et al., 1975). VAM populations are believed to be very low in intensively cultivated garden soil, probably because of their high fertility.

Differences in crop susceptibility to VAM presumabely. account in part for changes in VAM populations with different rotations. A lightly infected crop will obviously leave behind less infected root material than a heavily infected one. However, the effects of different rotations of annual crops are not altogether consistent. Kruckelmenn (1975) Observed more spores in wheat monoculture, and fewer in wheat after oats than in oat monoculture. There were fewest spores with potatoes. Probably the volume of soil occupied by the root systems of a crop as well as the percent root lenght infected influence the number of spores produced. These factors could also explain the higher spore numbers at intermediate than at high or low levels of phosphate fertilizer in a Rothamsted field (Hayman et al., 1975). Presumabelythere was abundant total infected root material at the intermediate level because high phosphate decreased percent root infection and low phosphate decreased root growth. This illustrates possible

ambiguities in some estimates of root infection and the relationship between root-based fungal biomass and spore production. Where total root growth is not greatly affected by treatment, percent infection and spore numbers can be closely related, e.g. in their negative responses to nitrogen fertilizer (Hayman, 1970). Thus the considerable variation in field populations of VAM fungi to be found within a single site can be partly explained by the inhibitory effects of large applications of nitrogen and phosphate fertilizers, (Hayman, 1970; Strzemska,1975). However, fertilizers may have a positive effect on VAM if initial soil fertility is very low(Kruckelmenn, 1975).

At a single site in Florida, Schenck and Kinloch, (1980) found marked differences in population of VAM fungi between different crops grown in monoculture for seven years on a newly cleared woodland site. There were more spores with soybean than with the other crops and fewest in the woodland. Three species of Gigaspora were most numerous around soybean roots, whereas two Glomus spp. were most prevailent with Bahia grass and Acaulospora spp. with cotton and peanut. Sorghum had the largest number of VAM species. This is one of the most detailed reports on the selective effects of host species under field conditions.