ELECTRONIC PROCESSES MODELLING IN POLYSILICON SOLAR CELLS

X. 6/ Y

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT FOR THE

DEGREE OF MASTER OF SCIENCE

BY SALAH A M. M. ELEWA

B. Sc. in Electrical Engineering

Under the Supervision of

Prof. Dr. M. N. SALEH Dr. A. ZEKRY Dr. M. EL-KOOSY

ELECTRONICS AND COMPUTER ENGINEERING DEPARTMENT FACULTY OF ENGINEERING AIN SHAMS UNIVERSITY

Central Library - Ain Shams University

APPROVAL SHEET

THIS THESIS

 $\mathbb{C}N$

ELECTRONIC PROCESSES MODELLING IN
POLYSILICON SOLAR CELLS

BY

ENG. SALAH A.M.M. ELEWA

HAS BEEN APPROVED BY

Prof. Dr. E.A. TALKHAN
Cairo University

./.,.....

Maj.Gen.Dr. W. ABOU ELSHOHOUD

Armament Authority

WHAPPHALL

Prof. Dr. M. N. SALEH
Ain Shams University

MN. Salek

4

ACKNOWLEDGEMENT

I must acknowledge special indebtedness to Prof. Dr. MOHAMED HABIL SALEH who has contributed to this work his wise counsel and his many years of experience as a supervisor. His encouragement and permanent support have helped greatly in making this work I hope, successful. I am also grateful to him for his untiring good-natured patience and professional attitude.

I would also like to express my deep appreciation to Dr. HANI FIKRY RAGALE for his outstanding contribution and intellegent remarks. He has helped and guided me greatly.

To Dr. ABDELHALIM ZEKRY, I pay my sincerest thanks for his helpful discussions, valuable suggestions and endless assistance throughout this work. His intellegent remarks have helped me greatly. He spared no effort in giving advise whenever needed.

I am deeply indebted to Dr. MOHAMED EL-KOOSY for his vigorous help and permanent support. He has always been generous and encouraging. His enthusiasm and scientific assistance made possible the achievement of this work.

Finally I would like to give a vote of thanks to everybody with whom I have ever worked. All have been more than helpful and generous and will I hope, forgive this general expression of thanks.

ABSTRACT

To make the photovoltaic solar energy conversion economically attractive, the cost of polysilicon solar cells must be reduced to more than one order of magnitude below the present cost of producing single crystal cells.

Silicon with higher concentration of impurities, so called solar-grade silicon(SoG-Si), is the major candidate to achieve this goal.

The different technologies to produce this solar-grade silicon are discussed in detail besides the other methods for polysilicon production like sheet casting or ribbon technique.

Grain boundaries and crystal defects are the main drawbacks of polysilicon materials. The different models describing the conduction in polysilicon are also presented.

The optical and electrical properties of sclar cells fabricated from polysilicon materials are described.

A numerical model characterizing the polysilicon solar cells is devolped . In this model, the grains are assumed to have a cylindrical snape. Assuming symmetry about the rotational axis, the three dimensional continuity equation is reduced to a two dimensional one.

The solar cell cutput parameters are computed using the proposed model. The results are analyzed and the optimum design structures are then proposed. Furthermore, based on the above mentioned model, a new approach to the Central Library - Ain Shams University

real polysilicon solar cell modeling is presented. In this model, the real distribution of the grains in the polycrystalline materials is taken into consideration. For the first time, a quatitative agreement has been found between measured and calculated results. More important, we have deduced that the origin of the low open circuit voltage in semicrystalline solar cells is the presence of fine grains taking the shape of sharp needles. In spite of the small overall area of these small grains, they lower the open circuit voltage of the cell and consequently its conversion efficiency.

LIST OF SYMBOLS

AMO	solar spectrum within free space(135.3 mW/cm2)
С	velocity of light in vacuum(2.998x108 m/sec)
$^{ m d}_{ m G}$	grain size(µm)
D_n	diffusion coefficient for electrons(cm ² /sec)
Dp	diffusion coefficient for holes(cm ² /sec)
E _c .	conduction band edge energy(eV)
$\mathbf{E}_{\mathbf{F}}$	Fermi level energy(eV)
Eį	intrinsic Fermi level energy(eV)
Eg	bandgap energy(eV)
Ep	phonon energy(eV)
Er	electric drift field in the radial direction(v/cm)
E	energy of the valence band edge(eV)
$\mathbf{E}_{\mathbf{x}}$	electric drift field in the longtudinal direction (v/cm)
FF	fill factor
G	generation rate due to incident light(cm ⁻³ /sec)
GB	grain boundary
h	Plank's constant(6.625x10 ⁻³⁴ J.sec)
Jd	dark current density(mA/cm2)
$^{ m J}$ dr	depletion region current density(mA/cm2)
J_{mp}	current density at the maximum power point(mA/cm ²)
J _n	electron current density in the P-type mat. (mA/cm2)
J _{od}	reverse saturation current density due to diff-usion(mA/cm2)
J _{or}	reverse saturation current density due to recombination (mA/cm^2)
J _p	hole current density in the P-type mat.(mA/cm²) Central Library - Ain Shams University


```
radial component of the current density(mA/cm2)
J_r
          recombination current density(mA/cm2)
Jrec
          short circuit current density(mA/cm2)
J_{gc}
          longitudinal component of the current density(mA/cm2)
J
          Boltzman's constant(1.386x10<sup>-23</sup> J/OK)
k
          diffusion length for electrons(um)
Ln
          diffusion length for holes(µm)
L_{\alpha}
          metalurgical grade
MG
          intrinsic carrier concentration(cm<sup>-3</sup>)
n_{i}
          index of refraction in air
\mathbf{n}_{\circ}
          index of refraction in the antireflection coating
\mathbf{n}_1
          index of refraction in the semiconductor
n_{2}
          acceptor concentration(cm<sup>-3</sup>)
Na
          donor concentration(cm<sup>-3</sup>)
N_{d}
          electron concentration in the P-type material(cm<sup>-3</sup>)
np
          thermal equilibrium electron concentration(cm<sup>-3</sup>)
npo
          input incident power density(mW/cm2)
Pin
          maximum power delivered from the cell(mW/cm<sup>2</sup>)
Pmax
          hole concentration in the N-type material(cm<sup>-3</sup>)
P_n
          thermal equilibrium hole concentration(cm<sup>-3</sup>)
Pno
          electronic charge(1.6x10<sup>-19</sup>Coulomb)
q
          trapping state density(cm<sup>-2</sup>)
ે+
          reflected part of light (%)
R
          load resistance(\Omega)
R_{T_{i}}
Rs
          series resistance (\Omega)
          shunt resistance(I)
R_{sh}
          semiconductor grade
Central Library - Ain Shams University
Se\mathbf{G}
```

```
solar grade
 SoG
             surface recombination velocity for electrons(cm/sec)
Sn
S'n
             surface recombination velocity for holes(cm/sec)
             grain boundary recombination velocity(cm/sec)
s_{\mathbf{g}}
             spectral response(mA/mW)
 SR
             absolute temperature(OK)
 Ā
             junction voltage(volts)
 V<sub>i</sub>
v_{mp}
             voltage at the maximum power point(volts)
Voc
             open circuit voltage(volts)
V_{\mathbf{T}}
             thermal voltage(kT/q)(volts)
             depletion region width(µm)
 Wdr
X,
             junction depth(µm)
X<sub>T.</sub>
             cell thickness(µm)
X
             absorption coefficient(cm-1)
             material permittivity(F/cm)
ε
3
             solar cell efficiency(%)
A
             wavelength(µm)
             photon flux(cm<sup>-2</sup>sec<sup>-1</sup>)
Φ
Z_{\rm p}
             electron lifetime(sec)
\mathcal{T}_{\mathsf{p}}
             hole lifetime(sec)
             electron mobility(cm2/v/sec)
\mu_n
             hole mobility(cm<sup>2</sup>/v/sec)
\mu_{p}
             photon frequency (Hz)
             phase thickness of optical coating
             mathematical sum from i=1 to i=n
```

Central Library - Ain Shams University

10

CONTENTS

		Page
INTRODUCTIO	ON	1
CHAPTER 1	POLYCRYSTALLINE SILICON FOR PHOTOVOLTAIC	
	APPLICATIONS	
1.1	Introduction	6
. 1.2	Metallurgical Grade Silicon	7
1.3	Semiconductor Grade Silicon	8
1.4	Solar Grade Silicon	9
	1.4.1 Reduction of volatile Si-H-Cl	
	compounds(Group I)	11
	1.4.2 Reduction of MG-Si(GroupH)	13
	1.4.3 Reduction of SiF-Compounds(GroupIII)	14
	1.4.4 Reduction of silica(Group N)	15
1.5	Production of polysilicon thin films	17
	1.5.1 Production of polysilicon sheets	
	by casting	17
	1.5.2 Production of polysilicon sheets	
	by spinning	18
	1.5.3 Production of polysilican ribbons	
	by the EFG method	20
	1.5.4 Production of polysilicon films	
	by deposition	21
1.6	Polysilicon availability for solar cell	
	industry	22
1.7	Electrical conduction in polycrystalline	
	silicon Central Library - Ain Shams University	24
	Ochital Library - Alli Oriallis Offiversity	

		Page
	1.7.1 Carrier trapping model	25
	1.7.2 Dopant segregation model	31
	1.7.3 Effect of carrier trapping and	
	dopant segregation on the poly-	-
	silicon conductivity	35
	1.7.4 The thermionic model	36
CHAPTER 2	PHOTOVOLTAIC CONVERSION	
2.1	Introduction	41
2.2	Absorption of light in semiconductors .	45
2.3	Reflection of light	48
2.4	The photovoltaic effect	5 2
2.5	Solar cell output parameters	53
2.6	Grain boundary effects on the cell	
	performance	55
2.7	Grain size effects on the cell	
	serformance	5 9
CHAPTER 3	POLYSILICON SOLAR CELL MODELING	
3.1	Introduction	62
3.2	The proposed model assumptions	62
3.3	Computational method	64
	3.3.1 General form of the continuity	
	equation in cylindrical coord-	
	inates	6 5
	3.3.2 Representation of the minority	
	carrier concentration in the top	
	layer N under illumination	66

11

			Fage
	3.3.3	Representation of the minority	
		carrier concentration in the	
		P- base under illumination	71
	3.3.4	Representation of the minority	
		carrier concentration in the	
		top layer N ⁺ under dark	
		conditions	7 4
	3.3.5	Representation of the minority	
		carrier concentration in the	
		P- base under dark conditions	77
CHAPTER 4	NUMERI	CAL RESULTS AND DISCUSSION	
4.1	Introd	uction	8 3
4.2	Minori	ty carrier concentration in	
	polysi	licon solar cells	84
4.3	Spectr	al response in polysilicon solar	
	cells		84
4.4	Polysi	licon solar cell short circuit	
	curren	t	94
4.5	Polysi	licon solar cell open circuit	
	veltag	e	95
4.6	Polysi	licon solar cell fill factor	104
4.7	Polysi	licon solar cell efficiency	104
4.8	Polysi	licen solar cells I-V	
	charac	teristics	115
4.9	Real o	olysilicon solar cell modeling	119
	4.9.:	Grain size distribution in poly-	
	Centr	crystalline silicon solar cells. al Library - Ain Shams University	120
	Contra	a. L.S. ary full Charles Chivolotty	

		Page
4.9.2	Calculation of the short circuit	
	current using the real model	123
4•9•3	Calculation of the open circuit	
	voltage using the real model	126
4.9.4	Calculation of the I-V charact-	
	eristic using the real model	131
4•9•5	Calculation of the grain size	
	distribution in polysilicon solar	
	cells	133
CONCLUSIONS	•	135
REFERENCES		138
APPENDIX I ·····	• • • • • • • • • • • • • • • • • • • •	151
APPENDIX II		153
APPENDIX III ·····		154
APPENDIX IV ····		155
APPENDIX V		156
APPENDIX VI		157
APPENDIX VII	· · · · · · · · · · · · · · · · · · ·	160
APPENDIX VIII	· · · · · · · · · · · · · · · · · · ·	162

Introduction

Energy in various forms, has played an increasingly important role in worldwide progress and industrialization. Abundant and inexpensive energy supplies have transformed many nations from subsistence level into highly developed economics. Despite the fact that per capita energy use varies for every nation around the world, increasing energy availability is now a key goal of every society.

Energy resources used today are mostly fossil-based fuels, with limited availability. With this limitation in mind, newer resources have been developed to replace the older resources and add to the total energy available.

Alternative energy resources are only a small part of the world's energy mix, but they are the key to the future.

Newer energy resources, such as wind generators and PHOTOVOLTAICS (PV), can generate electricity directly with out going through an intermediate thermal cycle. Electricity generated from such systems will play a major role in contributing to the overall energy supply, thus becoming a significant energy source for the worldwide industrialization.

PHOTOVOLTAIC systems use solar cells to convert daylight into electric energy. These cells are usually made from silicon, one of the most common elements on the earth crust.

Sclar cells work silently, cleanly and without harmful waste products. In addition, they can operate for many years