TOXIC EFFECTS OF NARCOTICS: EXPERIMENTAL STUDIES ON THE LIVER

THESIS

Presented to the Faculty of Girls

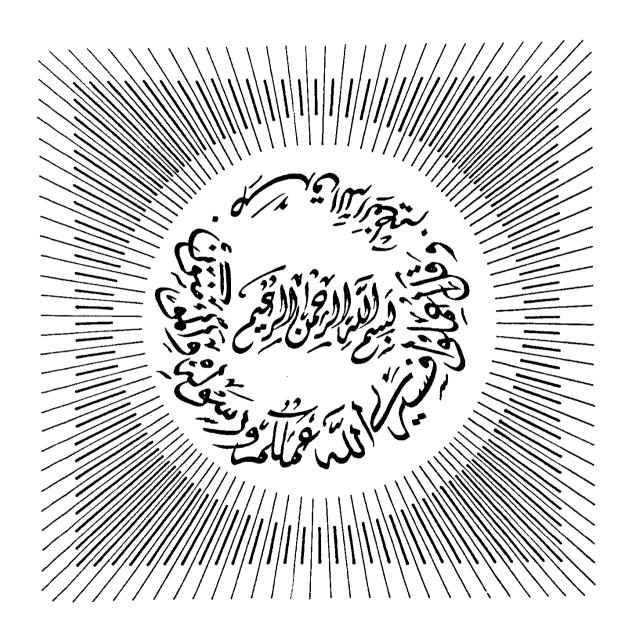
Ain Shams University

Ву

IMAN ABDEL-ALEIM ZIADA

Demonstrator

Zoology Department, Faculty of Girls


Ain Shams University

In Partial Fulfilment of the Requirements

For the Degree of

MASTER OF SCIENCE

(In Zoology)

TOXIC EFFECTS OF NARCORTICS EXPERIMENTAL STUDIES ON THE LIVER

BOARD OF SCIENTIFIC SUPERVISION

- Professor Dr. Madiha A.M. Ashry, (Ph.D.)

 Head of the Department of Zoology, Professor of
 Histochemistry, Faculty of Girls, Ain Shams
 University, Cairo, Egypt.
- Dr. Sanaa M.R. Wahba, (Ph.D.)

 Assistant Professor of Histochemistry, Department of Zoology, Faculty of Girls, Ain Shams University, Cairo, Egypt.

M. Ashry

Head of Department

TOXIC EFFECTS OF NARCORTICS: EXPERIMENTAL STUDIES ON THE LIVER

COURSES

Studied by the Candidate in Partial Fulfilment of the Requirements for the Degree of M.Sc.

- 1- Embryology and Experemental Embryology
- 2- Cytology and Genetics
- 3- Practical Zoology
- 4- German Language

CONTENTS

			Page
LIST OF	TABLES	· · · · · · · · · · · · · · · · · · ·	
LIST OF	FIGURE	es	
INTRODUC	CTION	•••••	1
CHAPTER	I:	REVIEW OF LITERATURE	3
	I.	Toxic Effect of Morphine	3
		1. Morphine lethality	3
		2. Morphine and animal behaviour	5
		3. General effects of morphine	6
	II.	Liver in Morphine Intoxication	12
	III.	Biochemical and Histochemical	
		Investigation	16
CHAPTER	II:	MATERIAL AND METHODS	22
		MATERIAL:	
	I.	Experimental Animals	22
	II.	Experimental Drug	22
	III.	Tissue Sampling	23
	IV.	Histopathological studies	24
		METHODS:	
	I.	Housing of Experimental Animals	25
	İI.	Body Weights	25
	TTT	Liver Weights	2.5

		Page
IV. Bioch	nemical Methods	26
	Determination of glycogen content	26
	Determination of protein content	27
(iii) D	etermination of lipid content	29
(iv) D	etermination of water content of the	
1	iver	31
V. Histo	ological and Histochemical Methods	33
VI. Stati	stical Analysis	34
Experimental Des	ign	36
CHAPTER III: R	ESULTS	38
Part I: M	orphological Investigation	38
1	. General behaviour	38
2	. Growth rates	39
3	. Absolute liver weights	41
4	. Relative liver weights	44
Part II: B	iochemical Studies.:	46
1	. Glycogen content	46
2	. Total protein content	4.8
3	. Total lipid content	51
4	. Liver water content	54

			Page
Par	t III:	Histological and Histochemical	
		Investigation	57
		I. Control group	57
		II. Experimental groups	62
		(I) Histological studies	62
		(II) Histochemical studies	72
		(i) Glycogen content	72
		(ii) Total protein content	77
		(iii) Lipid content	. 80
CHAPTER	IV:	DISCUSSION	. 82
	I.	Morphological Investigation	. 82
	II.	Histological studies	. 84
	III.	Biochemical and histochemical	
		Investigation	. 86
CHAPTER	V:	SUMMARY	. 92
BIBLIOGR	APHY		• 97
	TTIMES TO V		_

LIST OF TABLES

			Page
Table	(1):	Experimental design and group distribution	1
Table	(2):	Average growth rate	39
Table	(3):	Averages of absolute liver weights	42
Table	(4):	Averages of relative liver weights	44
Table	(5):	Averages of liver glycogen	46
Table	(6):	Averages of liver total proteins	49
Table	(7):	Averages of hepatic total lipids	52
Table	(8):	Percentage of liver water content	55

(i)

LIST OF FIGURES

	b	age
Fig. l:	Standard caliberation curve for protein	28
Fig. 2:	Standard caliberation curve for lipid	30
Fig. 3:	Average weekly body weights in grams	40
Fig. 4:	Averages of absolute liver weights in grams	43
Fig. 5:	Averages of relative liver weights to body weights	
Fig. 6:	Average change in liver glycogen (mg/100mg wet tissue)	4 7
Fig. 7:	Average change in liver total protein (µg/g wet tissue)	50
Fig. 8:	Average change in hepatic total lipid ($\mu g/g$ wet tissue)	
Fig. 9:	Percentage of liver water content	56
Fig.10:	Section of normal control liver (HX-E)	58
Fig.ll:	Enlarged section of normal control liver to show sinusoidal spaces.(HX-E)	
Fig.12:	Section of control liver to show normal distribution of glycogen (Best carmine)	60
Fig.13:	Section of control liver to show normal distribution of total protein (Bromophenol blue)	60

			Page
Fig.	1.4:	Section of control liver to show normal distribution of fat. (HX-E)	61
Fig.	15:	Section of liver after one week of 50mg/kg morphine injection showing focal infiltrative lesions (HX - E)	63
Fig.	16:	Section of liver after two weeks of 50mg/kg morphine injection showing ill-differentiated degenerative cells with faintly stained cytoplasm (HX - E)	
Fig.	17:	Section of liver after two weeks of 50mg/kg morphine injection indicating mild haemorrhagic lesions (HX - E)	64
Fig.	18:	Section of liver after three weeks of 50mg/kg morphine injection showing scattered areas of regeneration (HX - E)	64
Fig.	19:	Section of liver after three weeks of 50mg/kg morphine injection showing portal venules dilated and distended with erythrocytes (HX - E)	66
Fig.	20:	Section of liver after four weeks of 50mg/kg morphine injection showing increase in number of Ruppfer cells in sinusoids (HX-E).	66
Fig.	21:	Section of liver after four weeks of 50m/kg morphine injection showing focal necrosis.	67

			Page
Fig.	22:	Section of liver after one week of 100mg/kg morphine injection showing early degenerative change (HX - E)	69
Fig.	23:	Section of liver after two weeks of 100mg/kg injection showing inflammatory lesions by mono and polymorphs and red blood cells within dilated sinusoids.(HX - E)	69
Fig.	24:	section of liver after three weeks of 100 mg/kg injection showing infiltrative lesions replacing degenerative cells (HX - E)	70
Fig.	25:	Section of liver after four weeks of 100mg/kg morphine injection showing nuclei of necrotic cells densely stained and the cytoplasm swollen and vacuolated (HX - E)	70
Fig.	26:	Section of liver after four weeks of 100 mg/kg morphine injection showing normal centrilobular (a) and degenerative centrolobular cells (b) (HX - E)	71
Fig.	27:	Section of liver after six weeks of 100mg/kg morphine injection showing portal tracts invaded by mononuclear inflammatory cell, fibrocytes and lymphocytes (HX-E)	71
Fig.	28:	Liver section of rats treated with 50 mg/kg morphine showing periportal glycogen distributed as fine deposits within the hepatocytic cytoplasm (Best carmine)	74

		Page
Fig. 29:	Liver sections of rats treated with 50 mg/kg morphine showing increased glycogen deposits (Best carmine)	74
Fig. 30:	Liver sections of rats treated with 50mg/kg morphine showing diminution in amount of stored glycogen (Best carmine)	75
Fig. 31:	Liver sections of rats treated with 100mg/kg morphine showing cells, not involved in degenerative or necrotic changes, heavily loaded with glycogen (Best carmine)	75
Fig. 32:		76
Fig. 33:	Liver sections of rats treated with morphine injection showing heterogenous distribution of total protein content in hepatic lobule (Bromophenol blue)	78
Fig. 34:	Liver sections of rats treated with morphine showing inhibition in staining affinity in vacuolar and degenerative areas (Bromophenol blue)	78
Fig. 35:	Liver sections of rats treated with morphine showing increase in staining affinity within regenerating cells Bromophenol blue)	79

		Pag€
Fig. 36:	Liver sections of rats treated with 50mg/kg morphine showing diffused granules of lipid mainly healthy and regenerative cells (Sudan IV)	81
Fig. 37:	Liver sections of rats treated with 100mg/kg morphine showing necrotic cells devoid of stainable material (Sudan IV)	81

ACKNOWLEDGEMENT

The author wishes to express her deepest debt of gratitude to Professor Dr. Madiha A.M. Ashry, Head of the Department of Zoology and Professor of Histochemistry, University College for Women, Ain Shams University, for suggesting and planning the work, voluable help and supervision through out the accomplishment of this work.

I'am also deeply indebted to Dr. Sanna R. Wahba, Assistant Professor of Histochemistry, Department of Zoology, University College for Women, Ain Shams University, for her encouragement, valuable scientific guidance. With her continuous help the work was facilitated and more interesting.