POLLUTION OF THE AGRICULTURAL ENVIRONMENT IN EL-SAFF AREA, GIZA AND ITS EFFECT ON THE DETERIORATION OF PLUM TREES

BY

A N

OMIMA MOSTAFA EL-SAID

(B.Sc. Agric., Horticulture, Ain Shams Univ., 1979)

THESIS

51839

Submitted in Partial Fulfillment of the Requirement for the Degree of

MASTER OF

ENVIRONMENTAL AGRICULTURAL SCIENCE

TO

INSTITUTE OF ENVIRONMENTAL STUDIES AND RESEARCH AIN SHAMS UNIVERSITY

APPROVAL SHEET

POLLUTION OF THE AGRICULTURAL ENVIRONMENT IN EL-SAFF AREA, GIZA AND ITS EFFECT ON THE DETERIORATION OF PLUM TREES

BY

OMIMA MOSTAFA EL-SAID

(B.Sc. Agric., Horticulture, Ain Shams Univ., 1979)

This thesis for M.Sc. degree has been approved by:

Prof. Dr. N.S. ERIAN
Prof. of Agricultural Bio-chemistry,
Mansoura Univ.

Prof. Dr. M. ABOU RAWASH
Prof. of Pomology,
Ain Shams Univ.

Prof.Dr. F.G. MOAWAD
Prof. of Agircultural Bio-chemistry,
Ain Shams Univ.

Date of examination: 24 /1/1994

POLLUTION OF THE AGRICULTURAL ENVIRONMENT IN EL-SAFF AREA, GIZA AND ITS EFFECT ON THE DETERIORATION OF PLUM TREES

BY

OMIMA MOSTAFA EL-SAID

(B.Sc. Agric., Horticulture, Ain Shams Univ., 1979)

Under the supervision:

Prof.Dr. F.G. MOAWAD

Prof. of Agricultural Bio-chemistry, Faculty of Agriculture, Ain Shams University.

Prof.Dr. A.A.M. HUSSEIN

Prof. of Pomology, Desert Research Center.

Dr. H.I. EL-KASSAS

Lecturer of Environmental Agricultural Science, Ain Shams University.

ABSTRACT

The investigated areas are located in El-Saff, Giza governorate southward the industrial complex of Helwan. There are many sources of pollution in this area and the obtained data showed that these sources cause the contamination of irrigation water, soils and air (dust). At the same time, the three main types, which mentioned later, has markable effects on the plum trees. The effect could

be noticed on the physiological, physical and chemical properties of leaves of plum trees. Morphological and chemical analyses were carried out on the fruits of plum trees.

An increase in peroxidase activity, in leaves and fruits, was shown to be a sensitive indicator of air pollution injury by various pollutants to many trees, however, the increase occurred before visible symptoms appeared.

On the long run, as it is expected, these factors affect correspondingly the fruits of trees which are considered the most important economic production in this area.

CONTENTS

	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
a. SOURCES OF ENVIRONMENTAL POLLUTION	3
b. AIR POLLUTION WITH SOLID SUBSTANCES (DUSTS) .	6
c. WATER POLLUTION WITH TRACE ELEMENTS	8
d. SOIL POLLUTION	9
1. SOIL POLLUTION BY INDUSTRIAL WASTES	9
2. SOIL POLLUTION WITH TRACE BLEMENTS	12
e. EFFECT OF POLLUTION ON PLANTS	17
f. PHYSICAL AND CHEMICAL CHARACTERISTCS OF PLUMS	26
1. PHYSICAL PROPERTIES OF PLUMS	26
2. CHEMICAL COMPOSITION OF PLUMS AND PRUNES	26
III. MATERIALS AND METHODS	29
a. LOCATIONS OF STUDIED AREA	29
b. SAMPLES	31
1. FALLING DUST	31
2. IRRIGATION WATER	31
3. SOIL	32
4. PLANT SAMPLEŞ	32
c. ANALYTICAL METHODS	33
1. DUST ANALYSIS	33
2. WATER ANALYSIS	34

	Page
3. SOIL ANALYSIS	34
4. PLANT ANALYSIS	36
IV. RESULTS AND DISCUSSION	46
a. EFFECT OF DUST, WATER AND SOIL ON THE	
CONTAMINATION	46
1. EFFECT OF DUST ON THE CONTAMINATION	46
2. EFFECT OF WATER ON THE CONTAMINATION	54
3. EFFECT OF SOIL ON THE CONTAMINATION	57
- Physical and chemical characteristics	
of soil under investigation	57
b. EFFECT OF ENVIRONMENTAL POLLUTION ON PLUM	
TREES	69
1. CHEMICAL ANALYSIS OF PLUM LEAVES	69
1.1. Dry matter	69
1.2. Carbohydrate	71
2.CONTENTS OF ELEMENTS ON UNCLEANED AND	
CLEANED LEAVES	73
2.1. Macroelement contents	73
2.2. Microelement contents	80
3. CHEMICAL ANALYSIS OF PLUM LEAVES DURING	
SUMMER SEASON	89
3.1. Sugar contents	89
3.2. Crude protein, soluble protein and	
total amino acid contents	92

	Page
3.3. SDS-PAGE of extract protein	94
3.4. Peroxidase activity	94
3.5. Polyacrylamide gel electrophoresis	
(PAGE) of peroxidase	97
4. EFFECT OF ENVIRONMENTAL POLLUTION ON QUALITY	
OF PLUM FRUITS	100
4.1. Physical characteristics of plum fruits .	100
4.2. Dry matter	102
4.3. Chemical analysis of plum fruits	102
4.3.1. Mineral contents of the plum fruit .	102
4.3.1.1. Macroelements	102
4.3.1.2. Microelements	104
4.3.2. Bio-chemical components	106
4.3.2.1. Total acidity and total soluble	
solids	106
4.3.2.2. Carbohydrates	108
4.3.2.3. Crude protein, soluble protein	
and total amino acids contents	109
4.3.2.4. Activity of peroxidase	110
V. SUMMARY	116
VI. REFERENCES	124
ARABIC SUMMARY	

INTRODUCTION

I. INTRODUCTION

Pollution is defined generally as any change in the physical, chemical, and / or biological conditions of the environment which may harmfully affect the quality of human life. Pollution is usually treated in three natural interacting environmental categories namely air, water, and soil pollutions.

The resulting accumulated wastes may be mixed with openwater resources, leading to high levels of water pollution. The effects of mixing agricultural run off containing wastes, pesticides, and fertilizers in the rural water sources needs consideration. Currently, most of domestic fuels are from non-commercial sources: firewood, animal dung and agricultural wastes, even if reduced, this could lead to soil and air pollutions. Therefore, land protection is nowadays considered the most urgent problem associated with industrial progress and civilization development of societies. Water and soil pollutions, as well as air pollution may be due to the industrial factories which lie around the agricultural land.

Numerous localities of Egypt are known as polluted areas, especially those in immediate neighborhood of industrial communities and alongside highways.

However, Helwan was previously considered as one of the areas that supplies Cairo with vegetables and fruits. In

addition, it was considered as one of the important areas for health-care tourism because of aridity and mineral springs. The industrial areas in the A.R.E. where iron and steel industries, coal, cement, and chemicals factories are there.

These industries cause an environmental pollution (of air, water and agricultural lands) that leads to a reduction of the agricultural production.

For this reason among others, the aim of this investigation is to study the industrial pollution from Tebein to El-Saff areas (20 km), Giza governorate and to study effect of water and soil pollution on the deterioration of fruit productivity of plum trees. This investigation includes also determination of heavy metal contents and the extractable forms of such microelements in soils, plant samples, and polluted and non polluted irrigation water. The effect of heavy metals and industrial refuse of soils on morphological, physical and chemical properties of fruits were also accomplished.

REVIEW OF LITERATURE

II. REVIEW OF LITERATURE

a. SOURCES OF ENVIRONMENTAL POLLUTION:

Pollution is caused when a change in physical, chemical or biological conditions in the environment effect harmfully on the quality of human life including the effects on other animals and plants. As well as, there are several sources of pollution, but atmosphere is considered to provide the route through which pollutants, discharged in smoke and fumes, contaminate vegetation and other terrestrial surfaces. The most significant sources and forms of pollution, as reviewed in the literature, can be summarized as follows:

Anon (1974) indicated that until recent times, man and his activities could be considered just one among the many natural processes that are constantly modifying the state of biosphere. Today, however, humanity as a whole has become a powerful geological force. Changes which have taken place in the biosphere over recent decades when the accelerating human activity are comparable in scale with natural changes occurring over periods of million years. In addition, Otter et al (1985) reported that the main sources of air pollution are the use of fossil fuel for heat and energy production processes as well as the final use and disposal of many industrial products. Major components include sulphur dioxide and nitrogen oxides, as well as less specific pollutants such as particulates and

hydrocarbons. Chemical reactions in the atmosphere lead to formation of secondary pollutants such as sulphuric acid, nitric acid, ozone and photochemical oxidants. They added that important minor constituents are trace elements and polycyclic aromatic hydrocarbons which are transported and deposited in the same way as the sulphur and nitrogen compounds.

In addition, the primary environmental contaminants produced by agriculture are agrochemicals, in particular pesticides and fertilizers. These are deliberately introduced into the environment by farmers to protect crops and livestock and improve yields. Contamination is also caused, though, by the various wastes produced by agricultural processes, in much the same way as occurs in industry. The wastes comprise straw, silage effluent and livestock slurry, and, in the Third World, the wastes from farm processing of agricultural products such as oil palm and sugar. From the immediate environment of the farm contamination spreads to food and drinking water, to the soil, to surface and groundwaters and to the atmosphere, in some instances reaching as high as the stratosphere as stated by Conway and Pretty (1991).

Concerning pollution with trace metals, Caro (1964) pointed out that there are five sources of trace elements, viz., aerosols, pesticides, limestone and phosphate fertilizers, manures and sewage sludges and mine wastes. In this connection Thornton (1981), mentioned a number of man's

activities which effect on raising soil heavy metals above the natural background. Some of these activities are smelting activities, fertilization, vehicle emission, application of various urban and industrial waste products, and emission of contaminated smokes and dusts. Whereas, Smith (1973) showed that the trace elements include a large number of elements in the environment. Only a few of these can cause plant injury under certain environmental conditions, thus earning a designation as a trace element pollution. The number of such elements that are known to be injurious as atmospheric pollutant is even small. Sources of these pollutants are seemed to be metal or deposits, mining, smelting, and other industrial operations, or pesticide use. Emissions from coalfired power plant may also contribute to the trace element content of vegetation in the vicinity (Wangen and Turner, 1980).

Finally, Nassralla and Ali (1991) surveyed the air pollution sources and divided them into two main categories: The first is the fuel combustion sources, i.e., electric power stations, furnaces, boilers, vehicles, burning of garbage and others. Through those sources various pollutants are generated among which the following are the most significant: carbon monoxide, nitrogen oxides, sulphur oxides and polymerized gaseous hydrocarbons. The second is industrial sources which include hundreds of pollutant types starting from those