Articular Cartilage Structure, Biochemistry and Metabolism

An Essay
Submitted for the Partial Fulfillment
of the Master Degree in Orthopedic Surgery

By
Tamer Ibrahiem Sherief

M.B., B.Ch.

617.472 T. 1

Supervised by

yu 855

Prof. Dr. Mohammed Maziad

Professor of Orthopedic Surgery
Ain Shams University

Prof. Dr. Sameh Shalaby

Assistant Professor of Orthopedic Surgery
Ain Shams University

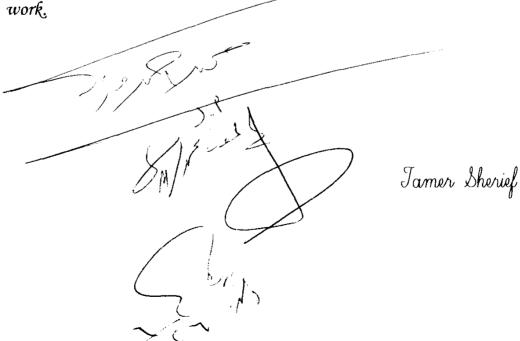
Ain Shams University Faculty of Medicine 1995

بسم الله الرحهن الرحيم

قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم

صدق الله العظيم

) constitution



Acknowledgment

Words stand short when they come to express my gratefulness to my supervisors.

First, to start with Prof. Dr. Mohammed Maziad, Professor of Orthopedic Surgery, Faculty of Medicine, Ain Shams University who assisted me beyond most wild hopes and whose place can only be first, he has been of utmost supreme guidance and supervision with the most kind encouragement.

I would like to express my greatest appreciation to Professor Dr. Sameh Shalaby, Assistant Professor of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, he has given me priceless guidance, and enormous effort in helping me in assembling the most fine details of this

List of contents

	Page
I. Introduction	1
II. Structure of articular cartilage	3
* Zonal classification	4
* The chondrocytes	12
* Matrix	23
III. Chemistry of articular cartilage	31
* Water in articular cartilage	32
* Collagen in articular cartilage	35
* Proteoglycan in articular cartilage	44
* Other components of the cartilage matrix	51
* The interaction of proteoglycan and collagen	54
IV. Metabolism of articular cartilage	56
* Proteoglycan synthesis	58
* Proteoglycan catabolism	62
* Collagen synthesis	66
* Collagen catabolism	69
* Dogradative enzymes of articular cartilage	69

V. Regulation of cartilage metabolism	72
* Control of chondroformation	74
* Control of cartilage catabolism	79
VI. Cartilage aging and degeneration	89
* Immature articular cartilage and	
the effects of aging	89
* Changes that affect articular cartilage	
in osteoarthritis	95
* Relation of aging and osteoarthritis	102
VII. Summary	103
VIII. References	109
IX. Arabic summary.	

List of figures

- **Figure (1):** Histology and orientation of collagen fibres in articular cartilage
- Figure (2): Surface contour of articular cartilage
- Figure (3): Photograph of artificial splits of articular cartilage surface
- Figure (4): E.M. scan of fibrous content of the middle zone
- Figure (5): Chemical composition of hyaline cartilage
- **Figure (6):** Structure of the α -chain
- Figure (7): Structure of the proteoglycan molecule
- **Figure (8):** Chemical formula and structure of the 3 primary glycosaminoglycans in articular cartilage
- **Figure (9):** Molecular organization of the solid matrix of articular cartilage
- Figure (10): Formation and composition of collagen
- Figure (11): Formation and composition of proteoglycans
- Figure (12): Mechanism of proteoglycan degradation
- Figure (13): Structure of the link protein
- Figure (14): Scheme for collagen fibre formation
- Figure (15): Regulation of cartilage catabolism

Introduction

Introduction

Articular cartilage, the resilient load bearing material of diathrodial joints, provides joints with excellent friction, lubrication and wear characteristics required for continuous gliding motion.

It also serves to absorb mechanical shock and spread the applied load onto the bony supporting structures below (*Mankin et al.*, 1993).

Under normal physiologic conditions, articular cartilage can perform these functions with little damage over seven or eight decades. However, this tissue may be damaged by trauma or by chronic and progressive degenerative diseases (Schenk et al., 1986). Although articular cartilage is a metabolically active tissue, it has little capacity for repair (Buckwalter and Cruess, 1991). New research on articular cartilage, based on recent advances in the understanding of articular cartilage biology, composition, metabolism, molecular and structural organizations and biochemical properties, offers hope for the development of biologically based repair procedures as alternatives to prosthetic joint replacement in the treatment of degenerative joint diseases and joint injuries (Heminen et al., 1987).

Thus, it is important to provide a firm understanding of the structure and function of normal articular cartilage. In this work, we will try to explain the various aspects of articular cartilage biology. This includes a detailed description of the structure biochemistry and metabolism with explanation of the different control mechanisms on the metabolic pathways. There will be also a little hint on the effect of aging on articular cartilage with a brief comparison between these aging changes and the degenerative changes that occur in osteoarthritis.

Structure of articular cartilage

Structure of the articular cartilage

Articular cartilage is formed of hyaline cartilage which microscopically has a glassy appearance because the amorphous matrix has the same refractive index as the collagen (with few elastic fibres embedded in it) (*Richard*, 1983).

Histologically it consists of relatively "few" cells with "much" intercellular matrix. Although the matrix and the cells are structurally separated they are functionally interdependent. Chondrocyte activity is necessary for the synthesis of matrix and probably for its physiological degradation (*Mankin and Lipiello*, 1969).

Inturn the matrix plays an important part in maintaining the homeostasis of the cell environment (*Gresh and Catchpole*, 1960).

Articular cartilage is devoid of nerves and is generally considered to be avascular, although a few blood vessels may be found in its parts adjacent to the bone (*Freeman*, 1973); also, *Sorgente et al.* (1975) agreed that the articular cartilage is an avascular tissue and he extracted a protein from the articular cartilage that prevents vascular invasion.

Zonal classification of articular cartilage

This classification suggested by Collin (1949) and McCall (1969).

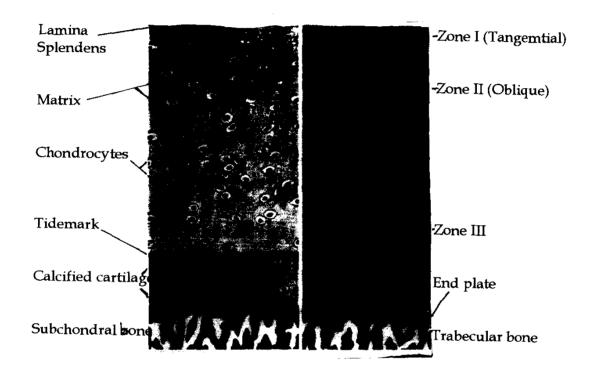
For descriptive purposes, the articular cartilage is divided into 4 zones: (Fig. 1)

Zone 1: (Superficial or tangential)

- Adjacent to the joint cavity.
- Fibres are arranged tangentially to the surface.
- Cells are discoidal with long axis parallel to the surface so, appear ovoid or elongated.
- The most superficial part of this zone is termed surface lamina or lamina splendens.

Zone 2: (Intermediate or transitional)

- Collagen fibres from a coiled interlacing network randomly arranged in relation to the surface.
- Cells are spheroidal and equally spaced.


Zone 3: (Deep or radial)

- Fibres are thicker, form a tight meshwork and arranged somewhat radial to the articular surface.
- Spheroidal cells are larger and arranged in columnar fashion (often in groups of seven to eight cells).

Zone 4: (Calcified)

- Adjacent to the subchondral bone.
- Cells are sparse and smaller.
- Matrix is heavily impregnated with calcium salts.

The junction between the calcified and non-calcified cartilage (zone 3 and 4) is marked by a basophilic line known as the Tidemark.

Histology

Orientation of collagen fibres

Figure (1)