THE ROLE OF COMPUTED TOMOGRAPHY AND RADIOISOTOPE IMAGING IN THE DIAGNOSIS OF PERFUSION PROBLEMS OF THE BRAIN

Essay

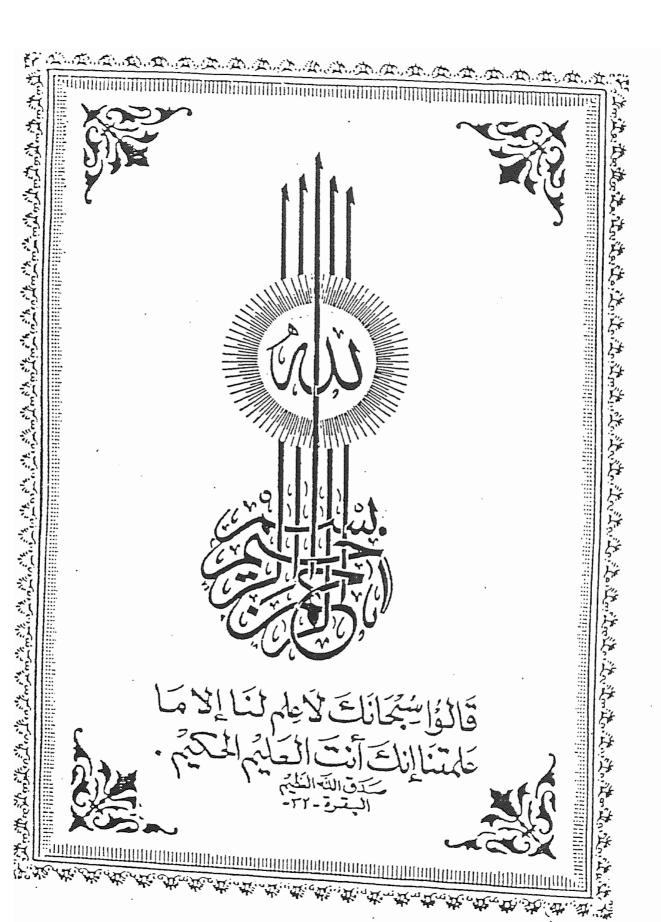
Sulmitted for partial fulfillment of the Master Degree of Radiodiagnosis

By Ahmed Mostafa Mohamed

 $\mathcal{M}.\mathcal{B}.\mathcal{B}.\mathcal{Ch}.$

Under Supervision of

Prof. Dr. Mohamed Sami El-Beblawy


Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Ahmed Talaat Khairy

50292

Assist. Prof. of Raadiodiagnosis Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 1994

TO... MY FAMILY

ACKNOWLEDGEMENT

I am deeply honoured to have the opportunity to express my great indebtress and gratitude to Prof. Dr. Mohamed Sami El-Beblawy, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his valuable supervision, ideal guidance, constructive critisism, and continual encouragement throughout the study.

I wish to express my sincere appreciation and gratitude to. Dr. Ahmed Talaat Khairy, Assis. Prof. of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his sincere encouragement, great help, valuable advice and facilities he offered through the study.

Also, many thanks and great appreciation to my parents for their constant help and cooperation.

Also, I would like to express my appreciation to all my professors, senior staff and colleagues at Radiology Department, Ain Shams University.

Ahmed Mostafa

CONTENTS

	Page
Introduction and aim of the work	1
Anatomy of the cerebral circulation	
Physiology of the cerebral circulation	17
Review of literature	
Pathology of cerebral perfusion problems	20
Technique of CT and ECT	36
Radiologic anatomy	55
Radiologic manifestations and illustrated cases	62
Summary and conclusion	116
References	
Arabic Summary	119

LIST OF FIGURES

Fig. No.	Title	Page
l	Angiogram of the internal carotid and vertebral arteries	3
2	Arteries at the base of the brain	5
3	Cortical distribution of the cerebral arteries	7
4	The arterial circle	10
5	Venous drainage of the basal ganglia	12
6	The dural venous sinuses	14
7	Atherosclerosis of the cerebral vessels	21
8	Hyaline arteriosclerosis	23
9	Carotid angiogram of MCA embolism	30
10	Gross pathology of MCA infarction	30
II	Gross pathology of lacunar infarcts	32
12	Position of standard slices on brain CT	37
13	The Hounsfield scale	42
14	Hardware of PET system	45
15	Tomographic measurement of LCMRglc with 18F-DG	47
16	Hardware of SPECT system	51
17	l23I activity in the brain and arterial blood on SPECT scanning	53
18	Normal CT appearance of cerebral vessels	~ ~
19	Supply areas of the cerebral arteries on CT	55 57
20	Perfusion maps of normal rCBF HMPAO-SPECT	57 50
21	PET images of the normal brain	58
22	MCA infarction	61
23	ACA infarction	62
24	PCA infarction	64
25	Watershed infarction	64
26	Venous infarction	66
		6 Q

27	Hemorrhagic infarction	70
28	Changes of contrast enhancement in infarction	72
29	Lacunar infarction	74
30	Pathophysiologic sequences of infarction I	77
3l	Pathophysiologic sequences of infarction II	79
32	Cerebral glucose metabolism in ischemic infarction	81
33	SPECT of infarction	83
34	CT vs SPECT in ischemic infarction	85
35	SPECT in TLAs	88
36	Structural vs functional imaging in MID	93
37	MID vs AD using PET	93
38	CT vs SPECT in AD	96
39	Perfusion deficits in DAT	98
40	SPECT scanning of parkinsons disease	101
4 l	SPECT in Parkinsonism: ON-OFF syndrome	103
42	% reduction of cortical HM.PAO ratios, DAT vs DPD	105
43	Reduction of cortical HM.PAO ratios in DAT vs DPD	107
44	Metabolic FDG images of patients with partial complex	110
	seizures	
45	Transmission and emission PET images of the temporal	112
	lobe in partial complex seizures	
46	CT vs SPECT in post-meningitic psychomotor epilepsy	114

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF THE WORK

Perfusion problems of the brain have become a major health problem for which the incidance and the resulting mortality rates are excessive and have been increasing allover the world including Egypt.

Cerebral perfusion problems include an acute form which is the cerebrovascular stroke as well as chronic forms such as transient ischemic attacks TIAs and dementia.

Cerebral angiography is essentially an investigation of the blood vessels of the brain and can localize different lesions but does not provide information about the cerebral perfusion.

Computed tomography can localize the lesions within the brain that result from blood flow problems such as local haemorrhage or regional necrosis. However, it is less informative in cases with long standing cerebral flow problems such as TIAs and dementia.

studies Radionuclide ECT (Emission computed tomography) cover these diagnostic gaps and proved valuable in diagnostic areas where CT is limited and less informative.

Accordingly, the aim of this study is to clarify the role of the different recent imaging modalities for early and accurate evaluation of cases of cerebral perfusion problems subsequently to achieve better management and prognosis of cases.

ANATOMY

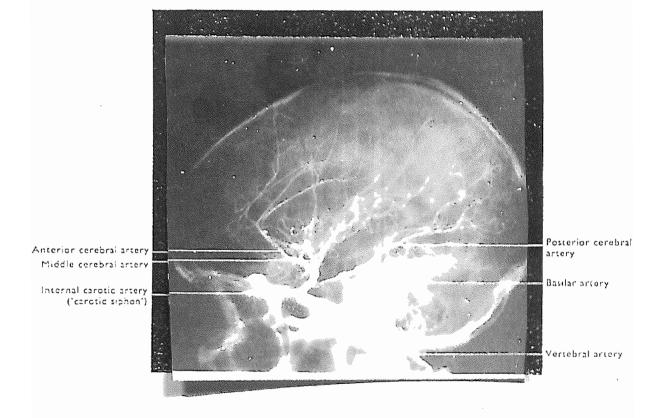


Fig. (1): Angiogram of the internal carotid and vertebral arteries. The distribution of the two arteries is outlined. Note the posterior communicating artery joining the upper end of the basilar artery to the internal carotid artery (Quoted from Romanes, 1979).

ANATOMY OF THE CEREBRAL CIRCULATION

Blood supply of the cerebral hemisphere:

Is derived from both the internal carotid and vertebral systems (Fig. l), which anastomose with each other around the optic chiasma and infundibulum of the pituitary stalk forming the circle of Willis (The french call it, more accurately, the polygon of Willis) (Last, 1984).

Arterial supply of the cerebral cortex:

Is by three cerebral arteries, anterior, middle and posterior. The former two are branches of the internal carotid, the last is the terminal branch of the basilar artery (from the vertebrals) (Fig. 2).

The internal carotid artery:

Emerges from the roof of the cavernous sinus, gives off the ophthalmic artery, then curls back to lie on the front half of the roof. It then turns vertically upward to the anterior perforated substance where it divides into its two terminal branches. It here gives off the striate arteries, the anterior choroid artery, and the posterior communicating artery (Williams et al., 1989).