Cross Reactivity Between Horse and Donkey Danders And Its Clinical Significance In Clinical Inhalant Allergy

Thesis
submitted for The Partial Fulfillment of
The Master Degree in
Medicine

رينافق

5 W 56

By Mohammad Abo-El-Fetouh Saad

M.B.B.Ch

616, 23 M. A

Supervised by

Prof. Dr. Mohammad Diaa El-Din Soliman

Prof. of Internal Medicine Faculty of Medicine Ain Shams University

Dr. Ashraf Mahmoud Okba

Lecturer of Internal Medicine Faculty of Medicine Ain Shams University

Faculty of Medicine Vin Shams University 1996

Dedication

To the soul of my father
To my mother
To my sisters
And to my brother

ACKNOWLEDGEMENT

I wish to express my deep thanks and gratitude to the great Professor Dr. *Mohammad Diaa El-Din Soliman*, Professor of Internal Medicine and Immunology, Faculty of Medicine, Ain Shams University, for giving me the privilege of working and for his skillful guidance and supervision throughout the whole work. He gave me a lot of his great and deep experience.

I would like to acknowledge my indebtedness to Dr. Ashraf Mahmoud Okba, Lecturer of Internal Medicine and Immunology, Faculty of Medicine, Ain Shams University, for his initial advice, constant guidance, patience and constructing criticism together with stimulating interest in conducting this study. Honestly, he facilitated so many difficulties that I have faced during this work.

I am also really thankful to Prof. Dr. *Afaf Shaban*, Professor of Microbiology and Immunology, Faculty of Medicine, Ain Shams University; Prof. Dr. *Aisha Abd- El-Hafez*, Professor of Microbiology and Immunology, Faculty of Medicine, Ain Shams University, and to Dr. *Sahwa Abd- El-Zaher*, Lecturer of Internal Medicine and Immunology, Faculty of Medicine, Ain Shams University, for their great help and advice.

ABBREVIATIONS

	
AS.A	Acetyl Salicylic acid
ABPA	Allergic Bronchopulmonary Aspergillosis
AMP	Adenosine monophosphate
ATP	Adenosine triphosphate
BAL	Broncho-alveolar lavage
BHR	Bronchial hyperreactivity
BPC	Bronchoprovocation challenge
BPT	Bronchoprovocation test
c-AMP	Cyclic - Adenosine monophosphate
cGMP	Cyclic - Guanidine monophosphate
ECF-A	Eosinophil chemotactic factor of anaphylaxis
ECP	Eosinophil cationic protein
EIA	Exercise-induced asthma
EPO	Eosinophil peroxidase
FEV ₁	Forced expiratory volume in one second
GTP	Guanidine triphosphate
HPETEs	Hydroperoxyeicosatetraenoic acids.
IF-A	Inflammatory factors of anaphylaxis
IL-5	Interleukin - 5
LTE ₄	Leukotriene E ₄
LTC ₄	Leukotriene C ₄
LTD₄	Leukotriene D ₄
MBP	Major basic protein
METEs	Monohydroxyeicosatetraenoic acids
NCF	Neutrophil chemotactic factor
NSAIDs	Non-steroidal anti-inflammatory drugs
PAF	Platelet(s) activating factor
PHI	Peptide histidine isoleucine
₽HM	Peptide histidine methionine
PCO_2	Partial carbon dioxide concentration
PEFR	Peak expiratory flow rate
PGE ₂	Prostaglandin E ₂
PGs	Prostaglandins
PGF-A	Prostaglandin-generating factor of anaphylaxis
PGF _{2a}	Prostaglandin F _{2a}
PO_2	Partial oxygen concentration
RAST	Radio-allergen - sorbent test
SPT	Skin prick test
TDI	Toluene di-isocyanate

Contents

	Page
Introduction	1
Aim of The Work	2
Review of Literature	
Bronchial Asthma	
- Definition and types of asthma	3
- Pathogenesis of asthma	14
- Bronchial hyperreactivity	36
- Clinical diagnosis of asthmatic patients	45
Animal Allergens	54
Horse and man	62
Subjects and methods	64
Results	72
Discussion	96
Summary and Conclusion	103
References	107
Arabic Summary	

LIST OF TABLES

	Page
Table (I):- Types of asthma	6
Table (II) :- Types of extrinsic asthma	7
Table (III) :- Classification of asthmatic patients	9
Table (IV):- Predictor index scoring system for asthmatics	48
Table (V):- Diseases transmitted from horse to man	62
Table (1) :- Clinical data for horse dander sensitive asthmatic	}
patients	75
Table (2):- Clinical data for donkey dander sensitive asthmatic	{
patients	77
Table (3) :- Clinical data of control subjects (normal)	78
Table (4):- PEFR for 10 control subjects sensitive to neither	
horse nor donkey dander antigens before and after inhala-	}
tion of each antigen separately	80
Table (5):- PEFR for 5 asthmatics from group I, sensitive to	
horse and donkey dander antigens before and after inhala-	
tion of each antigen separately	81
Table (6): PEFR for 5 asthmatics from group II, sensitive to	
horse dander antigen and not sensitive to donkey dander	
antigen, before and after inhalation of each antigen sepa-	
rately	81
Table (7):- PEFR for the 5 asthmatics from group III, sensitive	
to donkey dander and not sensitive to horse dander anti-	}
gens, before and after inhalation of each antigen separately	
Table (8):- Relation of asthma precipitated by donkey dander	
antigen and the sex of asthmatics sensitive to that	{
antigen	82
Table (9) :- Relation of asthma precipitated by donkey dander	1
antigen and winter season in donkey dander sensitive asth-	
matics	83
Table (10):- Relation of asthma precipitated by donkey dander	I
antigen and summer season in donkey dander sensitive	}
asthmatics	84
Table (11):- Relation of asthma precipitated by donkey dander	
antigen and family history of donkey dander sensitive asth-]
matics	84
Table (12):- Relation of asthma precipitated by donkey dander	1
antigen and eosinophilic count of donkey dander sensitive	
asthmatics	85
Table (13):- Relation of asthma precipitated by donkey dander	
antigen and the residence of donkey dander sensitive asth-	105
matics	85

LIST OF TABLES

(Continued.....)

Table (14):- Relation of asthma precipitated by donkey dander antigen and other associated types of allergy in donkey dander sensitive asthmatics	P	age
Table (15): The mean of the percentages of PEFR before and after inhalation of horse dander antigen for 10 horse dander sensitive athmatics	antigen and other associated types of allergy in donkey dander sensitive asthmatics	_

LIST OF FIGURES

	Page
Figure (I):- Mechanism of EIA	12
Figure (II):- Diagram to illustrate the contribution of eosino- phils to the pathophysiology of allergic asthma	25
Figure (III):- cAMP / cGMP balance and autonomic balance related to bronchomotor tone and release of mediators from mast cells	34
Figure (IV) :- Agarose gel plate	74
Figure (1):- Relation of asthma precipitated by donkey dander antigen and the sex of asthmatics sensitive to that antigen	88
Figure (2):- Relation of asthma precipitated by donkey dander antigen and different times of the year in donkey dander sensitive asthmatics	89
Figure (3):- Relation of asthma precipitated by donkey dander antigen and family history of donkey dander sensitive asthmatics	90
Figure (4):- Relation of asthma precipitated by donkey dander antigen and eosinophilic count of donkey dander sensitive asthmatics	91
Figure (5):-Relation of asthma precipitated by donkey dander antigen and the residence of donkey dander sensitive asthmatics	92
Figure (6):- Relation of asthma precipitated by donkey dander antigen and other associated types of allergy in donkey dander sensitive asthmatics	93
Figure (7):- The mean of the percentages of PEFR before and after inhalation of horse dander antigen for 10 horse dander sensitive asthmatics	94
Figure (8):- The mean of the percentages of PEFR before and after inhalation of donkey dander antigen for 10 asthmatics donkey dander sensitive	05
aonkey admaer sensitive	95

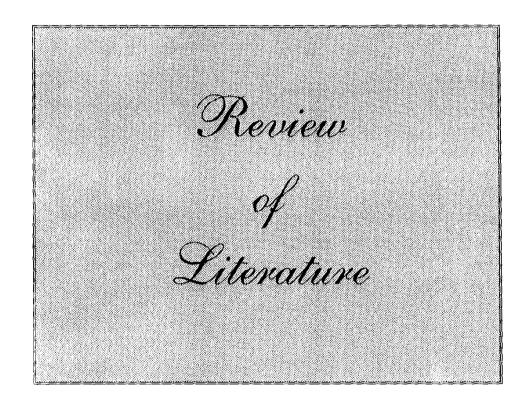
Introduction Sim of the Work

INTRODUCTION

Unlike so many diseases which can be attributed to the life style of modern man, asthma is a very ancient illness (*Hannaway*, 1989).

Asthma changes the quality of life of patients whatever is their age, and is an important cause of lost working days. The costs due to asthma are steadily mounting. The WHO draw maximum public attention to this disease and take measures for its control and prevention (*Michel et al.*, 1995).

Many animal species have been implicated as causes of human allergy. In most instances, the allergens emanating from these animals are air borne and produce respiratory reactions such as asthma and rhinoconjunctivitis (*Ohman*, 1985).


In Egypt, horse allergy is encountered among farmers in horse breeding areas and some workers in horse stalls, among police or military personnel participating in horse - riding training programs and among workers in the touristic field who expose intermittently to horses.

Because horses, donkeys and mules are wide spread in our Egyptian society, particularly in rural areas; the topic is important in the practice of allergy.

AIM OF THE WORK:-

The aim is to explore :-

- * The allergenic potentiality of donkey dander and its role as an inhalant allergen.
- * The possibility of cross antigenicity between horse and donkey danders.

REVIEW OF LITERATURE BRONCHIAL ASTHMA

* Magnitude of the problem :-

Bronchial asthma is increasingly becoming a public health problem in the developing world. Its incidence continues to rise throughout the world and, indeed, it has been increased by approximately 50% over the last ten years.

The severity of asthma is also increasing as is witnessed by the higher levels of hospitalization of sufferers (*Michel et al.*, 1995).

* Psycho-social implications of asthma:-

Although often ignored or overlooked, the psychosocial consequences of asthma are as important as its physiological effects. Because attacks frequently occur without warning, many asthmatics feel frightened, anxious or fearful of dying (*Miller*, 1987 and *Frank*, 1989) - feelings labeled "panic-fear" by some researchers (*Thompson and Thompson*, 1985).

As a result, asthmatics tend to avoid physical activities, sleep poorly and miss more school than non- asthmatics (*Rosendalil*, 1989).

Psycho-social factors may also play an important role in asthma mortality. In several recent studies, depression,