SOIL CUTTING

624,5136 A. I

Ву

ADEL EBRAHEEM EL-DESSOKY

A Thesis

Submitted in Partial Fulfillment of The Requirement for the **Degree of Master of Science**

In

Structural Engineering

Supervised by

Prof. Dr. Farouk I. El-Kady

Professor of Soil Mechanics and Foundation Faculty of Engineering Ain Shams University

91791

Prof. Dr. Mona M. Eid

professor of Soil Mechanics and Foundation Faculty of Enginering Ain Shams University

Prof. Dr. Ezzat A. Fattah

Professor of Soil Mechanics and Foundation Faculty of Engineering Ain Shams University

1994

Statement

This dissertation is submitted to Ain Shams University for

the degree of Master of Science in Civil Engineering.

The work included in this thesis was carried out by the

author in the Department of Structural Engineering, Faculty of

Engineering, Ain Shams University, from October 1988 to

October 1994.

No part of this thesis has been submitted for a degree or a

qualification at any other university of institution.

Date : 1994

Signature:

Name

: Adel E. El-Dessoky

ACKNOWLDGEMENTS

The author is indebted with great favour to **Dr. Farouk I. El-Kady**, The writer's major professor and supervisor of this investigation, for his direct supervision, continuous help and rational guidance throughout the research work.

Special thanks are made to my immediate supervisors Dr. Mona Eid and Dr. Ezzat Fatth for their generous assistance, helpful suggestion during the course of this study and assistance in the preparation of the manuscript.

Thanks are also to the technicians of the Laboratory of Soil Mechanics and Foundations, Faculty of Engineering, Ain Sahms University for their co-operation and friendly help.

Lastly, I owe to my Family, Father, Brother and my Beloved Wife, without their help, this thesis can not see the light.

Examiners Committee

Name, Title & Affilitation

1. Prof. Dr. Y. A. El-Kadi

Prof. of Geotechnical Eng.

Signature

2. Prof. Dr. T.A. Meki

Prof. of Geotechnical Eng.

Dept. of Structural Eng.

Faculty of Engineering.

ain Shams University.

Toroll A Alack

3. Prof. Dr. F.I. El-Kadi

Prof. of Geotechnical Eng.

Dept. of Structural Eng.

Faculty of Engineering.

Ain Shams University.

4. Prof. Dr. E.A. Fattah

Prof. of Geotechnical Eng.

Dept. of Structural Eng.

Faculty of Engineering.

Ain Shams University.

Date: / / 199

Ain Shams University Faculty of Engineering Dept. of Structural Engineering

Abstract: of the M.Sc.

Thesis submitted by: Adel Ebraheem El-Dessoky

Title of Thesis: Soil Cutting

Supervisors:

1. Prof. Dr. F.I. El-Kadi.

Prof. Dr. Mona M. Eid.

3. Prof. Dr. Ezzat A. Omeira

Registration Date:

Examination Date:

Abstract:

The principal purpose of the problem which forms the basis of this study was to look into the possibility of providing a rational analytical solutions for predicting the forces on a cutting blade driven horizontally into a loose sand. However, such analytical solution must be checked by a selected number of experimental tests to verify their accuracy. In this study the mathematical solution using a limit analysis theories based on the relationship between the horizontal force and the direction of movement for a given set of soil strength parameter's and a given plate configuration. The observation of soils under conditions of failure often resent the basis for the development of important theorems leading a solutions for forces and deformations at failure.

A glass-sided tank was designed to accomplish the observation and phtographing of the total soil failure zone. A series of experimental tests performed by using cutting blades with different angles of inclination-rigidly attached to a carriage and moved through a loose sand at specified constant speed and various depths of cut. The purpose of the experimental programme was to provide data on the interaction of the chosen cutting blades embedded in frictional soil under plane strain conditions which could be compared with anlaytical results. Mainly the following facts were investigated.

- 1. The lood-displacement response of the soil.
- 2. The soil deformation field.
- 3. Failure mechanisms.

Test results showed that the experimental observations verified the postulated failure modes. Moreover, there was fairly good agreement between the predicted forces and the experimentally measured ones.

Contents

		Pe	ıge No.
List of F	igures		iii
List of F	lates		vii
Chapt	ter 1 (In	ntroduction)	
1.1	General		. 1
1.2	Purpose	of study	2
1.3	Scop of s	study	3
1.4	Organiza	ation of the study	4
Chapt	ter 2 (Li	terature Review)	
2.1	Introduc	ction	5
2.2	Experin	nental and analytical studies for inclined tools	7
2.3	Vertical	soil cutting tools	16
2.4	Wide bla	ade cutting	. 21
2.5	Simi an	alytical method by Reece and Hettiaratchi	26
2.6	Analyti	cal method using the principle of limit	
	equilibri	um	31
2.7	Compu	ting the loads on flat blade as attraction	
	element	s (grouser of buldozer belt)	. 33
2.8	Predict	ing the stress distribution and the soil	
	deforma	ation ussing finite element method	36
Chap	ter 3 (A	nalytical Technique)	
3.1	Introduc	etion	. 46
3.2	Analytic	al model	. 46
3.3	The me	thod of Coulomb's theory	48
	3.3.1	The basic assumptions of the theory	. 48
	3.3.2	The proof of the theory	50

		-	ii -
3.4	The fric	tion circle method for passive pressure	54
3.5	The me	thod of ordinary statics "Newcastle method	58
	3.5.1	Introduction	58
	3.5.2	Forces in the spiral and Rankine zones	59
	3.5.3	Solution of the horizontal and vertical forces	65
	3.5.4	Cohisionless soil	72
Chap	ter 4 (E	xperimental Programme)	
4.1	General		77
4.21	Soil prop	perties	80
4.3	The test	facility	80
	4.3.1	The tank	80
	4.3.2	The cutting blade	82
	4.3.3	The loading system	86
	4.3.4	Force and displacement measurements	87
4.4	Sample	preparation and test procedure	87
4.5	Test pro	gramme	89
Chap	ter 5 (R	esults and Discusstions).	
5.1	General		96
5.2	Driving	force-travel distance relationship	96
5.3	Failure	mode and soil distortion	109
5.4	Effect of	f cutting blade angle	117
5.5	Effect of	f embedded depth	117
5.6	Validati	on of analytical modles	127
Chap	ter 6 (S	ummary and Conclusion)	
6.1	Summa	ary	134
6.2	Conclu	sions	135
	Refere	nces	136
	Arabic	Summary	

List of Figures

Figure No.		Page
Fig. 2-1;	Passive earth pressure on a retaining wall	
	Terzaghi-Ohde).	6
Fig. 2-2:	The effect of depath of cut d and lift angle d on	
	the draft force of an inclined tool Kawamura, Soc.	
	Agro. Mach. Jour. (Japan).	9
Fig. 2-3:	Hypothetical forces and their orientation on a	
	segment of soil reacting to an inclined-plane tillage	
	tool. (Soehne, Grundlagen der Landtechnik).	9
Fig. 2-4:	Calculated and experimental draft values for an	
	inclined tillage tool. (Kawamura, Soc. Agr. Mach.	į
	Jour. (Japan).	12
Fig. 2-5:	Soil resistances (draft) are measured and calculated	
	for an inclined tillage tool operating in a sandy soil	
	(Soehne, Grundlagen der Landtechnik).	12
Fig. 2-6:	Measured and calculated draft of an inclined tillage	
	tool at various tool velocities. (Rowe and Barnes,	
	Amer. Soc. Agr. Engin. Trans.).	17
Fig. 2-7:	The nature of soil failure for soil reacting to a	
	narrow vertical tillage tool. (Payne, Jour. Agr.	
:	Engin. Res.).	20
Fig. 2-8:	The nature of soil failure caused by a vertical tool in	
	a firm soil side view, B, plane view. (Payne, Jour.	
	Agr. Engin. Res.).	20
Fig. 2-9-A:	Effect of inclination angle on the total forces	
	(Blade Model).	27
Fig. 2-9-B:	High of forces relative to the total force at tool	
	inclinations (Blade Model)	27

Fig. 2-10:	Determination of passive earth pressure by the	
	logarithmic spiral method.	30
Fig. 2-11:	Soil failure patterns in front of a cutting blade	32
Fig. 2-12:	Conditions of wedge formation	43
Fig. 2-13-A:	Blade-soil system at constant deppth of cut	38
Fig. 2-13-B:	Soil failure patterns in front of a cutting blade	38
Fig. 2-14-A:	Horizontal force VS distance travelled for different	
	blade inclinations	39
Fig. 2-14-B:	Vertical force VS distance travelled for different	
	blade inclinations	40
Fig. 2-15-A:	Experimental and analytical horizontal displacement	
	fields for the 10° inclined blade-soil system Blade	
	displacement = 1.0 inch).	41
Fig. 2-15-B:	Experimental and analytical vertical displacement	
	fields for the 10° inclined blade-soil system.	42
Fig. 2-16-A:	Experimental and analytical horizontal displacement	
	fields for the 50° inclined blade-soil system - (blade	
	displacement = 1.0 inch).	43
Fig. 2-16-B:	Experimental and analytical vertical displacement	
	fields for the 50° inclined blade-soil system (blade	
	displacement = 1.0 inch).	44
Fig. 3-1:	Geometry of plastic region and failure zone beneath	
	cutting blade.	47
Fig. 3-2:	Geometry of different analytical models.	47
Fig. 3-3:	Forces acting on the sliding during passive state.	49
Fig. 3-4:	Friction circle method for cohesionless soil with	
	horizontal ground surface.	56
Fig. 3-5:	Soil wedge and slip line field.	60
	Í	

Fig. 3-6:	Forces diagram of the radial and Rankine passive	
	zones.	60
Fig. 3-7:	Mohr diagram of principal stress relationship.	61
Fig. 3-8:	Logarithmic sector of radial zone.	61
Fig. 3-9:	Force diagram of the equilibrium wedge abc	67
Fig. 3-10:	Mohr diagram for solving angle Δ	67
Fig. 3-11:	Forces on a plate grouser at critical equilibrium.	67
Fig. 3-12:	Forces diagram of the equilibrium wedge abc	69
Fig. 3-13:	Forces diagram of the equilibrium wedge abc at	
	$\theta = 0.$	71
Fig. 4-1:	General view for soil cutting test facility.	78
Fig. 4-2:	Chart for determining the grain size distribution	
	curve of used sand.	79
Fig. 4-3:	Soil cutting test facility.	81
Fig. 4-4:	Isometric view of the sand container.	83
Fig. 4-5:	Six different types of cutting blades with 5 mm	
	thick, 100 m width and 300 mm long. Used at,	
	30, 45, 60, 90, 120 and 135 degrees inclination	
	angles to the horizontal.	84
Fig. 4-6:	Moving carriage & cutting blade	85
Fig. 5-1:	Driving force-travel distance for depth of	
	cut = 10 cm, blade angle = 30°.	97
Fig. 5-2:	Driving force-travel distance for depth of	
	cut = 12 cm, blade angle = 30°.	98
Fig. 5-3;	Driving force-travel distance for depth of	
	cut=10 cm, blade angle=45°,to horizontal.	99
Fig. 5-4:	Driving force-travel distance for depth of	
	cut=12 cm, blade angle=45°, to horizontal.	100

Fig. 5-5 :	Driving force-travel distance for depth of	
	cut=10 cm, blade angle=60°, to horizontal.	101
Fig. 5-6:	Driving force-travel distance for depth of	
	cut=12 cm, blade angle=60°, to horizontal.	102
Fig. 5-7:	Driving force-travel distance for depth of	
	cut=10 cm, blade angle=90°,to horizontal.	103
Fig. 5-8 :	Driving force-travel distance for depth of	
	cut=12 cm, blade angle=90°, to horizontal.	104
Fig. 5-9 :	Driving force-travel distance for depth of	
	cut=10 cm, blade angle=120°, to horizontal.	105
Fig. 5-10 :	Driving force-travel distance for depth of	
	cut=12 cm, blade angle=120°, to horizontal.	106
Fig. 5-11:	Driving force-travel distance for depth of	
	cut=10 cm, blade angle=135°, to horizontal.	107
Fig. 5-12:	Driving force-travel distance for depth of	
	cut=12 cm, blade angle=135°, to horizontal.	108
Fig. 5-13 :	Effect of the blade angle on the resisting force	124
Fig. 5-14:	Relationship between the measured area of the	
	failure zone and the blade angle.	125
Fig. 5-15:	Relationship between the specific area of the	
	failure zone and the blade angle.	126
Fig. 5-16:	The measured and the calculated driving force	
	at 10 cm depth of cutting for the different blade	}
	angle	131
Fig. 5-17:	The measured and the calculated driving force	
	at 12 cm depth of cutting for the different blade	
	angle	132

List of Plates

Page No. Plate 4-1: Photographic record of a soil cutting test for blade inclination angle 30°. 90 Plate 4-2: Photographic record of a soil cutting test for blade inclination angle 45°. 91 Plate 4-3: Photographic record of a soil cutting test for blade inclination angle 60°. 92 Plate 4-4: Photographic record of a soil cutting test for blade inclination angle 90°. 93 Plate 4-5: Photographic record of a soil cutting test for blade inclination angle 120°. 94 Plate 4-6: Photographic record of a soil cutting test for blade inclination angle 135°. 111 Plate 5-1: Photographing record of a soil cutting test for blade inclination angle 30° depth of cutting 10 cm. 112 Plate 5-2: Photographing record of a soil cutting test for blade inclination angle 30° depth of cutting 12 cm. 113 Plate 5-3: Photographing record of a soil cutting test for blade inclination angle 45° depth of cutting 10 cm. 114 Plate 5-4: Photographing record of a soil cutting test for blade inclination angle 45° depth of cutting 12 cm. 115 Plate 5-5: Photographing record of a soil cutting test for blade inclination angle 60° depth of cutting 10 cm. 116 Plate 5-6: Photographing record of a soil cutting test for blade inclination angle 60° depth of cutting 12 cm. Plate 5-7: Photographing record of a soil cutting test for blade inclination angle 90° depth of cutting 10 cm. 118

Plate 5-8 :	Photographing record of a soil cutting test for blade	
	inclination angle 90° depth of cutting 12 cm.	119
Plate 5-9 :	Photographing record of a soil cutting test for blade	
	inclination angle 120° depth of cutting 10 cm.	120
Plate 5-10 :	Photographing record of a soil cutting test for blade	
	inclination angle 120° depth of cutting 12 cm.	121
Plate 5-11 :	Photographing record of a soil cutting test for blade	<u> </u>
	inclination angle 135° depth of cutting 10 cm.	122
Plate 5-12 :	Photographing record of a soil cutting test for blade	
	inclination angle 135° depth of cutting 12 cm.	123