NUTRITIVE VALUE OF SOME ENERGY AND

PROTEIN BY-PRODUCTS

FOR FEEDING RABBITS

BY

HODA EL-SAID EL-GABRY

. A thesis submitted in partial fulfiliment

c t

the requirement for the degree of

MASTER OF SCIENCE

636.5085 H. S

IN

Agriculture Sciences
(Poultry Nutrition)

Department of Poultry Production

Faculty of Agriculture

Ain-Shams University

NUTRITIVE VALUE OF SOME ENGERGY AND PROTEIN BY-PRODUCTS FOR FEEDING RABBITS

BY

HODA EL-SAID EL-GABRY B.Sc. of Agric. Sci. Poultry Production Ain Shams Univ., 1984

This Thesis for M.Sc. degree has been approved by:

Prof.Dr. HASSAN M.ABD-ELLA...H...A. M. L. A. Professor of Poultry Nutrition,
Animal Prod. Research Institute.

Prof.Dr. MOSAAD A. EL-ZEINY......
Professor of Poultry Nutrition.
Poultry Production Dep., Fac.,
of Agic. Ain Shams Univ.

Date of Examination: 16/ / / 1995

NUTRITIVE VALUE OF SOME ENERGY AND PROTEIN

BY-PRODUCTS FOR FEEDING RABBITS

BY HODA EL-SAID EL-GABRY B.Sc. of Agric. Sci. Poultry Production Ain Shams Univ., 1984

Under the supervision of:

Prof.Dr. MOSAAD A. EL-ZEINY
Professor of Poultry Nutrition.
Poultry Production Dep., Fac.,
of Agic. Ain Shams Univ.

Dr. MOHAMED. A. EL-SHEIKH

Senior Researcher, poultry nutrition department
Animal production Research Institute,
Ministry of Agriculture,

Dr.SAID ABD EL-RAHMAN

Lecturer of poultry Nutrition.
poultry production Dep., Fac.,
of Agric. Ain Shams Univ.

ABSTRACT

The present study was designed to estimate the effect of using two different sources by - products of protein; as decortecated cottonseed meal (DCSM); corn gluten meal (CGM); and two different sources by - products of energy as broken macaroni(pasta), broken wheat to replace 50% or 100% of the dietary protein soybean meal and energy yellow corn respectively, on the performance of growing rabbits.

Key Words:

Decorticated cottonseed meal (DCSM) and corn gluten meal (CGM) versus soybean meal, broken wheat, broken pasta versus yellow corn (YC), feeding rabbits, body performance, digestibility, trials, carcass characteristics.

ACKNOWLEDGEMENT

The writer wishes to express her thanks and great indefcedness and sincere appreciation to Prof.

Dr. M. El-ZEINY, Prof. of Poultry Nutrition Poultry Prod. Dep. Ain-Shams
University for his direct supervision, suggesting the subject continuous help and
his advice during the preparation and writing of this manuscript.

My sincere appreciation and deep gratitude are extended to Dr. S.A. IBRAHIM, Lecturer of Poultry Nutrition, in the some department for his sincere help, continuous encouragement and kind advice during the experimental work.

I would like to express my gratitude and appreciation to Dr. MOHAMED.

A. EL-SHEIKH, Senior Researcher, poultry nutrition department , Animal production Research Institute, Ministry of Agriculture, for careful revision and advice for this thesis.

And all the staff members of poultry Nutrition Dep. Animal Prod.

Research Institute for their great help during the form, and laboratory work at this study.

Finally I want also to express my acknowledgements to all staff members of experimental station, barrage. Poultry form help me in this research, and all my colleagues in the same Dep. for their kind help and encouragement through out this work.

My profound gratitude goes to all members of poultry production department, Faculty of Agriculture, Ain-Shams University for the great support and help rendered the course of this study.

CONTENT

13	α	-
"	11.2	ш
•		_

1-	<u>INTRODUCTION</u>	1
2-	REVIEW OF LITERATURE	2
	2.1. Protein sources	2
	2.1.1. Decorticated cotton seed meal (DCSM)	2
	2.1.1,1.Chemical composition of cotton seed meal	2
	2.1.1.2. Decorticated cotton seed meal for feeding	
	livestock	5
	2,1,2. Corn gluten meal (CGM)	12
	2.1.2.1. Chemical composition of corn gluten meal	12
	2.1.2.2.Corn gluten meal for feeding livestock	14
	2.2. Energy sources	18
	2.2.1. Macaroni by-products (Pasta)	18
	2.2.1.1. Chemical composition of macaroni by-products.	18
	2.2.1.2. Macaroni by-products for feeding livestock	19
	2.2.2. Broken wheat for feeding livestock	21
	2.3. Protein and energy requirement	25
	2.3.1. protein requirements	25
	2.3.2. Energy requirements	29
	2.4. Digestibility trails	3 1
	2.5. Effect of different factor on carcass	
	characteristics	37

Page

3. <u>MATERIAL AND METHODS</u>	42
3.1. Experimental rabbits and managements	42
3.2. Experimental diets	
3.3. Digestibility trials	48
3.4. Carcass characteristics	 4 8
3.4.1. Animals	4 8
3.4.2. Preparation of rabbits for slaughter of	nd
dressing	4 9
3.5, Chemical analysis	 4 9
3.6. Statistic analysis	 4 9
4. RESULTS AND DISCUSSION	50
4.1. proximate analysis of the two experime	ntal diets 50
4.2. The first experiment	51
4.2.1. Effect of replacing soybean meal by	lifferent
protein sources on rabbit performance	
4.2.1.1.Live body weight	51
4.2.1.2. Daily live weight gain	54
4.2.1.3.Feed consumption	
4.2.1.4.Feed conversion	59
4.2.2. Digestibility coefficients and nutritive	62
4.2.3. Carcass characteristics	66
4.2.3.1. Average weight carcass characteris	tics 66
4.2.3.2. Average percentage of carcass cha-	
4.2.3.2.A.Carcass and edible parts	68
4.2.3.2.B.Unedible parts	7 0
4.2.4. Economical study	71

3. Second expertment	••••
4.3.1. Effect of different energy sources on rabbits performance	74
4.3.1.1.Live body weight	74
4.3.1.2. Daily body weight gain	ウ B
4.3.1.3.Feed consumption	81
4.3.1.4.Feed conversion	83
4.3.2. Digestibility coefficients and nutritive values	85
4.3.3. Carcass characteristics	89
4.3.3.1. Average weight carcass characteristics	89
4.3.3.2. Average percentage of carcass characteristic	s 92
4.3.3.2.A. Carcass and edible parts	
4.3.3.2.B.Unedible parts	95
4.3.4. Economic efficiency	9 7
5. <u>SUMMARY</u>	100
7. <u>REFERENCES</u>	••• 1 05
6. <u>APPENDIX</u>	126
O ADADIC CUMMADU	V

LIST OF ABBREVIATIONS

ADE Acid Detergent Fiber.

A.O.A.C Association of Official Agriculture Chemists.

BM Broken Macaroni (Pasta).

B.V Biological value.

BW Broken Wheat.

B. Wt Body weight

C.F Crude Fiber.

C.P Crude Protein.

Cal California.

CGF Corn gluten feed.

CGM Corn gluten meal.

CSM Cotton seed meal.

DDGS Dry Distillers Grain and Solubles.

DM Dry Matter.

DP Digestible Protein.

EE Ether Extract.

FCR Feed Conversion Ration.

GC Ground Cake.

NFE Nitrogen Free Extract.

NPU Net Protein Utilization.

NRC National Research Council.

NZW New Zealand White.

OM Organic Matter.

SBM Soybean meal.

SC Sesame Cake.

TPE Total Protein Efficiency.

WP Wheat Bran.

YC Yellow Corn.

LIST OF TABLES

Tables 1	Vo.	Page No.
1	Proximate analysis with and range of	
	cottonseed meal from different laboratories	3
2	Chemical composition of cottonseed meal	4
3	Chemical composition of corn gluten meal	13
4	Reviewed means of some carcass traits in	
	New Zealand White rabbit	38
5	Experimental design	44
6	The chemical composition of ingredients(%	(a) 45
7	Composition of the experimental one diets	
	(protein sources)	4 5
8	Composition of the experimental two diets	
	(energy sources)	47
9	Proximate analysis of experimental rabbit	
	diets	50
10	Effect of different protein sources on	
	rabbit performance	52
11	Effect of different protein sources on	
	apparent digestibility coefficient and	
	nutritive value for rabbits	63
12	Effect of different protein sources on	
	the average weight of carcass characteristic	cs 67

Tables	No.	Page	No.
13	Effect of different protein sources		
	on the average percentage of carcass		
	characteristics		69
14	The economic efficiency of experimenta	d	
	treatment (protein sources)		73
15	Effect of different energy sources on		
	rabbit performance		7 5
16	Effect of different energy sources on		
	apparent digestibility coefficient and		
	nutritive value for rabbits		86
17	Effect of different energy sources on		
	the average weight of carcass		
	characteristics		90
18	Effect of different energy sources on		
	the average percentage of carcass		
	characteristics		93
19	The economic efficiency of experimenta	ul	
	treatment (energy sources)		9 8

LIST OF FIGURES

Effect of different protein sources.

<u>Figu</u>	<u>re No.</u> Pa	ge No.
1	Live body weight	5 3
2	Average daily gain(g/day)	5 5
3	Feed consumption (g/day)	57
4	Feed conversion ratio	60
5	Digestibility coefficients and nutritive va	alue 64

Effect of different energy sources.

Figure No:

6	Live body weight	76
7	Average daily gain(g/day)	79
8	Feed consumption (g/day)	82
9	Feed conversion ratio	84
10	Digestibility coefficients and nutritive value	87

INTRODUCTION

INTRODUCTION

Corn is mainly used in the poultry and rabbit diets as a source of energy whereas, soybean meal is manly used as a source of protein. Their have prices increased sharply in the egyptian market in the last few years depend upon their prices in the world market. Therefor, there is urgent needs to search for alternative ingredients which could be used as cheap sources of energy and protein to partial or full replace of corn and soybean meal in the poultry and rabbit diets.

Macaroni by-products are the produced during the processing of macaroni, Spaghetti and pasta. They are, however un suitable for human consumption according to *The Egyptian organization for standardization (1970)*. Macaroni by-product is generally high in carbohydrate content and thus could be used as an excellent source of energy. Wheat is not usually fed to animals because of its high price; however, un marketable broken grain may be used for all classes of live stock up to 50%. However, the alternative locally produce meal such as decorticated cotton seed meal (CSM) and Corn gluten meal (CGM) could be used as a source of protein to replace the soy bean meal in poultry and rabbit diets. The objectives of this study were to evaluate the nutritive of these alternative sources of energy (broken macaroni and broken wheat) and proteins (local decorticated cotton seed meal, DCSM and corn gluten meal, CGM) as possible substituted in diets for rabbits. Digestibility coefficients were determined for the experimental diets. Carcass characteristics were also measured.