CERCARIOMETRY IN THE STUDY OF SCHISTOSOMIASIS TRANSMISSION IN DIFFERENT HABITATS IN EGYPT

BY

KAREM MOHAMED ALY EL-HOMMOSSANY

B.Sc. IN ZOOLOGY

MEDICAL MALACOLOGY LABORATORY

THEODOR BILHARZ RESEARCH INSTITUTE

A THESIS
SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS
FOR THE
DEGREE OF MASTER OF SCIENCE

ENVIRONMENTAL SCIENCES

DEPARTMENT OF BIOLOGICAL AND PHYSICAL SCIENCES,

ENVIRONMENTAL STUDIES AND RESEARCHES INSTITUTE,

AIN SHAMS UNIVERSITY.

1994

بسلهالاناليد

SUPERVISORS

Prof. Dr.

ABDALLA M. IBRAHIEM

PROFESSOR OF ZOOLOGY, FACULTY OF SCIENCE
AIN SHAMS UNIVERSITY

Prof. Dr.

FOUAD YOUSIF

PROFESSOR, DEPARTMENT OF ENVIRONMENTAL

RESEARCH AND MEDICAL MALACOLOGY

THEODOR BILHARZ RESEARCH INSTITUTE

Prof. Dr.

MENRIET ROUSHDY

HEAD, DEPARTMENT OF ENVIRONMENTAL RESEARCH

AND MEDICAL MALACOLOGY

THEODOR BILHARZ RESEARCH INSTITUTE

ACKNOWLEDGMENTS

The author wishes to express his deep gratitude to Prof.Dr. Abdalla Mohamed Ibrahim, Professor of Zoology, Faculty of Science, Ain Shams University, for supervising the work, reading the final manuscript and for continuous encouragement.

Deep appreciation and thanks are due to Prof.Dr. Fouad Yousif, Professor of Medical Malacology, Theodor Bilharz Research Institute, Imbaba, Egypt, for his direct supervision, continuous guidance and his valuable help in the preparation of the manuscript.

Grateful thanks are extended to Prof.Dr.

Menriet Roushdy, Head of Department of Environmental
Research and Medical Malacology, Theodor Bilharz
Research Institute, Imbaba, Egypt, for participation in
supervising the work and kind help in the preparation
of the manuscript.

Thanks also due to Dr. Clive Shiff, Department of Immunology and Infectious Diseases, The Johns Hopkins University, Baltimore, U.S.A. for his help and fruitful discussions. My appreciation is also extended to Prof. Dr. Mohamed El-Emam, Professor of Medical Malacology, Theodor Bilharz Research Institute, for his kind help in the statistical analysis of the results.

This study was carried out in the Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Egypt, and was supported, in part, by the Ministry of Health, Egypt/United States Agency for International Development funded Schistosomiasis Research Project, 263 - 01402, Grant 02 - 06 - 27.

Table of contents

Pa	age
Acknowledgments A	
Introduction	1
Review of Literature 3	
Material and Methods1	1
Results	8
1. Evaluation of certain cercariometric methods	
under laboratory condition 28	8
1.1. Cercariometry by differential	
filtration using tap and common	
canal water 28	8
1.2. Cercariometry by centrifugation	
using tap and common canal water 3.	1
1.3. Effect of turbidity on cercariometry	
by differential filtration and	
centrifugation	4
1.4. Cercariae detection in water by mice	
exposure	9
1.4.1. under different exposure periods 3	9
1.4.2. Using different degrees of	
temperature 4	1
1.4.3. Influence of host density on	
cercarial recovery 4	1

		Page
	1.5. Exposure of mice to Schistosoma	
	mansoni cercariae in natural water	45
2.	Environmental conditions to sample	
	water for schistosome cercariometry	49
	2.1. Site of water sampling at different	
	degrees of temperatures	49
	2.2. Location of shedding snails	54
	2.3. Cercarial distribution	58
	2.4. Day time	62
	2.4.1. Day time hourly pattern of cercarial	
	output uder laboratory day light	62
	2.4.2. Cercariometry at daytime hourly	
	intervals under outdoor conditions.	66
	2.5. Effect of cercarial age	
	(time of dispersion) on cercariometry.	70
	2.6. Illumination	74
3.	Cercariometry under semifield conditions	78
	3.1. Number of shedding snails	78
	3.2. Location of shedding snails	82

		rage
3.3.	Distance between shedding snails	
	and water sampling sites	86
3.4.	Daytime water hourly sampling at	
	various seasons of the year	89
3.5.	Effect of Water volume in ditches	
	on cercariometry	95
3.6.	Effect of various aquatic plants	
	on cercariometry	98
3.7.	Effect of water sample volume	
	on cercariometry	105
3.8.	Cercariometry by centrifugation versus	
	snail sampling for the detection of	
	schistosomiasis transmission sites	108
Discussi	on	111
Summary		.126
Referenc	es.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	130
Arabic s	ummary	

List of Tables

Table	e No.	Page
1	Chemical analysis of ditch water	24
2	Cercariometry by differential filtration of	
	tap and canal water using various cercarial	
	concentrations	30
3	Cercariometry by centrifugation using tap	
	and canal water using various cercarial	
	concentrations	33
4	Cercariometry by filtration using turbid wate	r 36
5	Cercariometry by centrifugation using turbid	
	water	37
6	Effect of exposure period on cercariometry	
	by mice exposure	40
7	Effect of temperature on cercariometry by	
	mice exposure to <u>Schistosoma mansoni</u>	
	cercariae under laboratory conditions	43
8	Effect of host density on cercariometry	44
9	Exposure of mice to S. mansoni cercariae	
	in natural water	47
10	Cercariometry by sampling of water from	
	different sites (by centrifugation) at	
	different levels of temperature	52

Table	e No.	Page
11	Effect of location of shedding snails on	
	cercariometry under laboratory conditions	56
12	Effect of cercarial distribution in water	
	on cercariometry	60
13	Day time hourly pattern of Schistosoma	
	mansoni cercarial outpot under laboratory	
	day light and temperature	64
14	Cercariometry of <u>Schistosoma mansoni</u> at	
	daytime hourly intervals under outdoor	
	conditions	68
15	Effect of cercarial age (time of dispersion)	
	on cercariometry	72
16	Effect of illumination on cercariometry in	
	natural canals (temperature 21°c)	76
17	Effect of number of shedding snails on	
	cercaariometry (centrifugation) in natural	
	ditches	80
18	Effect of the location of shedding snails	
	on cercariometry in natural ditches	84
19	Effect of distance between shedding snails	
	and water sampling sites on cercariometry	
	in natural ditches	87

Table	e No.	Page
20	Cercariometry of <u>Schistosoma mansoni</u> at day	
	time hourly sampling during February under	
	semifield conditions . (Winter)	90
21	Cercariometry of <u>Schistosoma mansoni</u> at day	
	time hourly sampling during April under	
	semifield conditions. (Spring)	91
22	Cercariometry of <u>Schistosoma mansoni</u> at day	
	time hourly sampling during August under	
	semifield conditions. (Summer)	92
23	Cercariometry of <u>Schistosoma mansoni</u> at day	
	time hourly sampling during October under	
	semifield conditions. (Autumn)	93
24	Effect of water volume in ditches on	
	cercariometry under semifield conditions	96
25	Effect of aquatic plants on cercariometry	
	under simulated natural condetions	
	(Shedding snails hanged in the free areas	
	off the plants)	101
26	Effect of aquatic plants on cercariometry	
	under simulated natural conditions	
	(Shedding snails hanged under plants near	
	to the free area)	10:

ľabl	e No.	Page
27	Effect of water sample volume on	
	cercariometry	107
28	Efficacy of cercariometry by centrifugation	
	versus snail sampling in detection of	
	transmission sites	110

List of Figures

Figur	ce No.	Page
1	A longitudinal sector of the filtration	
	aparatus	14
2	A longitudinal sector of the centrifuge	17
3	Mice exposure device. A longitudinal section	n
	at A-A plane, B Top view	20
4	Plan of experimental area	23
5	Water temperature of experimental ditches	
	during Oct. 1990 - Dec.1991	25
6	Effect of turbidity on cercariometry by	
	differential filtration & centrifugation	38
7	Exposure of mice to Schistosoma mansoni	
	cercariae in natural water	48
8	Cercariometry by sampling of water from	
	various sites at different levels of	
	temperature	53
9	Effect of location of shedding snails on	
	cercariometry under laboratory conditions	57
10	Effect of cercarial distribution in water	
	on cercariometry	61