

Nuclear Reactions at High Energies

Submitted by

Magda Talib Aly Hilal Al-Hinai B.Sc. 1991

Supervised by

PROF. DR. M. G. EL MOHANDIS


Prof. Dr. A. Y. Abul-Magd

Department of Mathematics,

Faculty of Science,

ŀ

Department of Mathematics, Women's University College for Arts, Science and Education, Ain Shams University.

To

Women's University College for Arts, Science and Education Ain Shams University

In Partial Fulfilment of the Requirements for the Award of the M.Sc. Degree in Applied Mathematics

رِسِمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ هَالَ سَنَشُدُّ عَضُدَكَ بِأَخِيكَ وَ نَجْعَلُ الْكُمَا سُلْطَاناً هَلا يَصِلُونَ إِلَيْكُمَا الْكُمَا سُلْطَاناً هَلا يَصِلُونَ إِلَيْكُمَا إِلَيْلَتِنَا أَنْتُمَا وَ مَنِ اتَّبَعَكُمَا الْعَلْبُونَ صَدَقَ اللَّهُ الْعَظِيمُ

with gratitude I dedicate this work to the memory of my dear father

Acknowledgement

Thank God for graciously granting
me the privilege of working
under the supervision of
Prof. Dr. M. G. El Mohandis
and Prof. Dr. A. Y. Abul-Magd,
who were very patient, gentle and
understanding in their guidance.

Thank God for mercifully supporting me with the encouragement of all the staff of the Mathematics Department, Women's University College for Arts, Science and Education.

Thank God for generously offering me all benefits, a wise mother and a magnanimous brother always busy caring for me presenting all facilities and help.

NOTE

In addition to the research work covered in this thesis, the candidate has passed written examinations in the following postgraduate courses:

- · Quantum Mechanics.
- Group Theory.
- Theory of Atomic Collisions.
- German Language.

with grade "Excellent" in each.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	
ABSTRACT	
INTRODUCTION	1
CHAPTER I: A REVIEW OF GLAUBER'S THEORY	6
THE HIGH ENERGY APPROXIMATION.	8
Nucleus-nucleus Collisions.	22
CHAPTER II FORMULATION AND PREDICTION OF THE REACTION CRO	<u>ss</u>
SECTION IN NUCLEAR COLLISIONS.	32
FORMALISM.	32
THE REACTION CROSS SECTION FOR PROTON NUCLEUS COLLISIONS.	32
The Gaussian distribution of the target nuclear density.	35
The uniform distribution of the target nuclear density.	36
Wood- Saxon's nuclear density distribution.	37
THE REACTION CROSS SECTION FOR NUCLEUS-NUCLEUS COLLISIONS.	39
The reaction cross section for collisions between two nuclei having Gaussian	
density distribution	40
The reaction cross section between a projectile having a Gaussian density	
distribution and a target with a uniform density distribution	41
CALCULATIONS AND DATA ANALYSIS.	44
In Proton-Nucleus Collisions.	44
IN NUCLEUS-NUCLEUS COLLISIONS.	57

CHAPTER III: MODIFICATION OF THE GLAUBER MODEL	
DESCRIPTION OF THE REACTION CROSS SECTION	67
COULOMB MODIFIED GLAUBER MODEL.	67
THE OPTICAL LIMIT OF GLAUBER'S THEORY.	68
THE MODIFIED GLAUBER MODEL FOR THE DESCRIPTION OF COLLISIONS BET	WEEN
HEAVY NUCLEI.	74
THE COULOMB MODIFIED GLAUBER MODEL DESCRIPTION OF THE REACTION	N CROSS
SECTION.	78
CALCULATIONS AND DATA ANALYSIS.	80
THE COULOMB MODIFIED REACTION CROSS SECTION	80
CILL PERD IN THE MICH COPIED IN OF THE AVAILABLE OF BUILDING	
CHAPTER IV THE DISASSEMBLY OF HEAVY NUCLEI BY HIGH	0.0
ENERGY PROTONS	88
Introduction	88
FORMALISM	97
CALCULATIONS AND DATA ANALYSIS	100
THE FIRST STEP OF THE REACTION	100
THE SECOND STEP OF THE REACTION	103
APPENDICES	109
THE REACTION CROSS SECTION FOR GAUSSIAN-GAUSSIAN NUCLEAR	
DENSITIES	109
THE OVERLAP INTEGRAL OF GAUSSIAN-UNIFORM NUCLEAR DENSITIES.	113
CONCLUSIONS	116
REFERENCES	117
ARABIC SUMMARY	120

LIST OF FIGURES

Fig	1.1 An illustrative figure showing the two components $(ilde{b},z)$ of ti	ŀΕ
	POSITION VECTOR \vec{r}	_9
FIG.	1.2 A SCHEMATIC REPRESENTATION OF HIGH ENERGY NUCLEUS-NUCLEUS	
	COLLISIONS.	_23
Fig.	2.1 Proton-nucleon cross sections.	_46
FIG.	2.2 PROTON-NUCLEUS REACTION CROSS SECTIONS CALCULATIONS	
	FOR ⁹ Be.	_50
FIG.	2.3 PROTON-NUCLEUS REACTION CROSS SECTIONS CALCULATIONS	
	FOR ¹² C	_51
Fig.	2.4 PROTON-NUCLEUS REACTION CROSS SECTIONS CALCULATIONS	
	FOR ¹⁶ O	_52
Fig	2.5 PROTON-NUCLEUS REACTION CROSS SECTIONS CALCULATIONS	
	FOR ²⁷ Al.	_53
Fig.	2.6 PROTON-NUCLEUS REACTION CROSS SECTIONS CALCULATIONS	
	FOR ⁶⁵ Cu.	_54
Fig	2.7 PROTON-NUCLEUS REACTION CROSS SECTIONS CALCULATIONS	
	FOR ²⁰⁸ Pb	_55
FIG.	2.8 Nucleus-nucleus reaction cross section calculations	
	FOR ¹² C+ ¹² C	_59
Fig	2.9 Nucleus-nucleus reaction cross section calculations	
	FOR ²⁰ Ne+ ¹² C	_60
Fig	2.10 Nucleus-nucleus reaction cross section calculations	
	FOR ¹² C+ ²⁷ Al	_61
Fig.	2.11 NUCLEUS-NUCLEUS REACTION CROSS SECTION CALCULATIONS	
	FOR ¹² C+ ⁵⁷ Fe	_62
FIG.	2.12 NUCLEUS-NUCLEUS REACTION CROSS SECTION CALCULATIONS	
	FOR ¹² C+ ⁶⁵ Cu.	_63
FIG.	2.13 Nucleus-nucleus reaction cross section calculations	
	FOR ¹² C+ ⁶⁶ Zn.	64

Fig.	2.14	NUCLEUS-NUCLEUS REACTION CROSS SECTION CALCULATIONS	
	FOR 1	² C+ ⁸⁹ Y	_65
Fig.	3.1	ELASTIC DIFFERENTIAL CROSS SECTION FOR 13C+208Pb.	_73
Fig.	3.2	DIAGRAMMATIC REPRESENTATION OF COLLISIONS IN THE PRESENCE AN	ΝD
	THE A	BSENCE OF THE COULOMB EFFECTS	_74
Fig.	3.3	The angular distribution for 40 Ar+ 208 Pb and 13 C+ 208 Pb.	_77
Fig.	3.4	THE COULOMB MODIFIED REACTION CROSS SECTION PREDICTIONS FOR	
	p+ ¹² C	·	83
Fig.	3.5	THE COULOMB MODIFIED REACTION CROSS SECTION PREDICTIONS FOR	l
	b+ ₁₀ C		_84
Fig.	3.6	THE COULOMB MODIFIED REACTION CROSS SECTION PREDICTIONS FOR	
	p+ ²⁰⁸ 1	Pb	_85
Fig.	3.7	THE COULOMB MODIFIED REACTION CROSS SECTION PREDICTIONS FOR	
	¹² C+ ¹	² C	_86
Fig.		THE COULOMB MODIFIED REACTION CROSS SECTION PREDICTIONS FOR	
	¹⁶ O+ ²	⁰⁸ Pb, ²⁰ Ne+ ²³⁶ U, ²⁰ Ne+ ²⁰⁶ Pb and ⁴⁰ Ar+ ¹¹⁹ Ag	_87
Fig.	4.1	AN ILLUSTRATION OF THE KNOCK-ON CASCADE INITIATED BY A HIGH	
	ENER	GY PROTON.	_88
FIG.	4.2	A DESCRIPTION OF THE DISINTEGRATION OF A NUCLEUS SHOT BY A HIGH	·{
	ENER	GY PROTON	_89
Fig.	4.3	CALCULATIONS OF THE CROSS SECTION $ \sigma_{s} $ For Several Proton Nuclear	.EUS
	COLL	ISIONS.	101
Fig.	4.4	THE DISTRIBUTION OF THE EXCITATION ENERGY FOR p+159Tb	
	REAC	TION	102
Fig.	4.5	THE EXCITATION ENERGY LOST PER UNIT MASS EVAPORATION FOR Cu.	Ag
	AND A	Au	105
FIG.	4.6	THE MASS YIELD CURVES FOR p+Cu AND p+Ag AT 3 GeV.	106
Fig.	4.7	THE MASS YIELD CURVES FOR p+Au at 1, 3 and 6 GeV.	107
Fig.	4.8	THE MASS YIELD CURVES FOR p+Ta AT 5.7 GeV AND p+Ag AT	
	300 C	GeV.	108

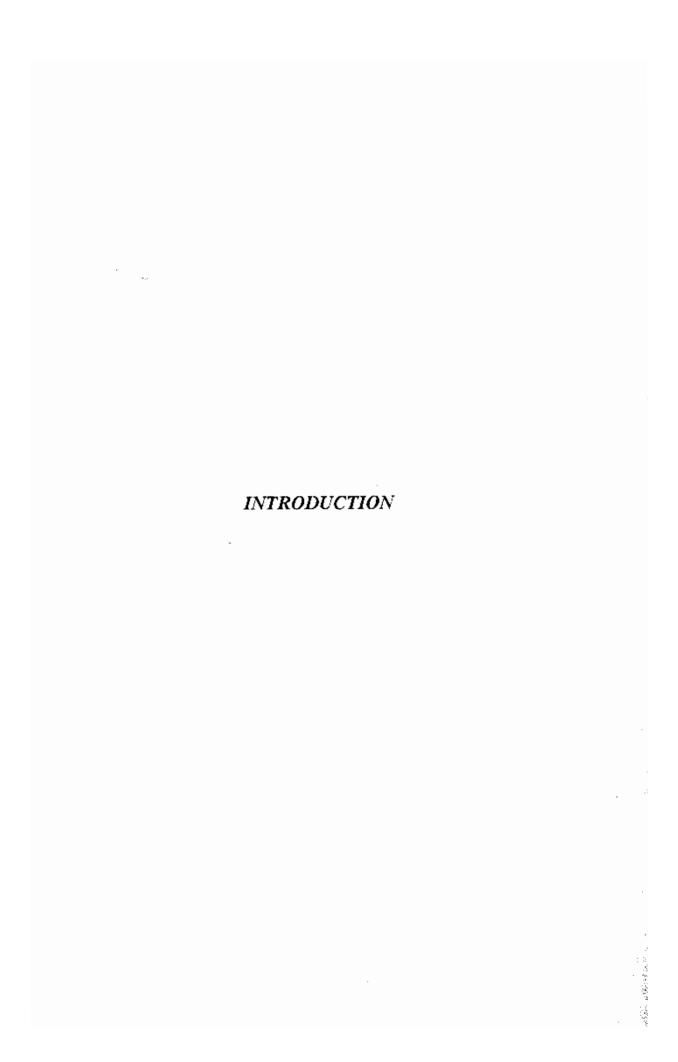
LIST OF TABLES

TABLE 2.1	THE NUCLEON-NUCLEON CROSS SECTION IN THE ENERGY RANGE	
100-22	00 MeV	_47
	THE VALUES OF THE DIFFUSENESS AND THE CENTRAL NUCLEAR DENSIT	Y
FOR GA	USSIAN DISTRIBUTIONS.	_48
TABLE 2.3	A COMPILATION OF THE WOOD-SAXON DENSITY PARAMETERS.	_49
TABLE 2.4	A COMPARISON OF THE PROTON-NUCLEUS REACTION CROSS SECTION	
PREDIC	TIONS WITH EXPERIMENT.	_56
TABLE 2.5	A COMPARISON OF THE NUCLEUS-NUCLEUS REACTION CROSS SECTION	
PREDIC	TIONS WITH EXPERIMENT.	66

ABSTRACT

Abstract

High energy nuclear reactions are treated by Glauber's multiple scattering theory. Within the framework of this theory, a major part of this thesis is devoted for the study of the total reaction cross section, σ_R , and its modifications. As a primary goal, the reaction cross section for proton-nucleus collisions is calculated. The following target nuclear density distributions are adopted during calculations: the Gaussian distribution, the uniform distribution, and finally, the two-parameter Fermi distribution (Wood-Saxon). For the Gaussian and the uniform nuclear shapes, the reaction cross section is analytically derived. Applying the Wood-Saxon distribution, the problem is intractable analytically and thus σ_R is numerically evaluated. The following targets are considered ⁹Be. ¹²C, ¹⁶O, ²⁷Al, ⁶⁵Cu and ²⁰⁸Pb, where the projectile energy varied from 100 to 2200 MeV. Also, a compiled comparison of the reaction cross section experimental results with the present calculations is presented for a variety of targets at different proton energies.


In nucleus-nucleus collisions, firstly, the reaction cross section is analytically calculated for interactions between nuclei with Gaussian nuclear density distributions. Another case is considered in which the projectile density distribution is Gaussian while the target density is assumed to be uniform. The following reactions are considered: ${}^{12}\text{C} + {}^{12}\text{C}$ at energies 50 - 1000 MeV/nucleon. ${}^{20}\text{Ne} + {}^{12}\text{C}$, ${}^{12}\text{C} + {}^{27}\text{Al}$. ${}^{12}\text{C} + {}^{57}\text{Fe}$, ${}^{12}\text{C} + {}^{66}\text{Zn}$ at energies 50 - 350 MeV/nucleon, and ${}^{12}\text{C} + {}^{56}\text{Cu}$ at energies 50 - 1500 MeV/nucleon. in addition to a tabulated comparison of the reaction cross section predictions with the corresponding experimental results for several nucleus-nucleus reactions at

different energies. The present calculations of the reaction cross section are shown to be in close agreement with experiment.

In the second stage of this work, the Glauber description of the reaction cross section is modified to describe low energy reactions. This modification diminishes some deviations that occur at low energies.

In the low energy region, where the Coulomb effects are significant, an expression that relates the reaction cross section in the presence of the Coulomb effects to the reaction cross section in the absence of these effects is established.

Finally, the thesis is ended by the discussion of high energy proton induced spallation reactions which are viewed as two step processes. In the first step, and for a Gaussian target nucleus, an analytical expression is derived for the cross section σ_n for the incident proton to collide with n of the target constituents. The following targets are considered: 12 C, 27 AI, 64 Cu and 208 Pb to estimate the dependence of σ_n on n. In the same step of the reaction, the cross section $\frac{d\sigma}{dE^*}$ to deposit an energy E^* , after n proton-nucleon collisions, is calculated for the p+ 159 Tb collision at Ep=600MeV. In the second step of the reaction -the decay of the struck target- the mass yield distribution is predicted for the following reactions: p + Cu, p + Ag at Ep = 3 GeV, p + Au at Ep = 1 GeV, 3 GeV and 6 GeV, p + Ta at Ep = 5.7 GeV and p + Ag at Ep = 300 GeV. The predictions provide a reasonable representation of the available experimental data.

