CALCULATION OF OSCILLATOR STRENGTH FOR

SOME ATOMIC SERIES

THESIS

Submitted for Partial Fulfillment

of the Requirements

for M.Sc. Degree (Physics)

51750

By

MAGDY ALY ATTIA MOHAMED EL-SHOURA

(B.Sc.)

To
The Faculty of Science
Ain Shams University
Cairo - Egypt
1995

CALCULATION OF OSCILLATOR STRENGTH **FOR SOME ATOMIC SERIES**

Thesis advisor

Approval

Prof. Ali H. Moussa

Dr. Gaber T. Omar

Dr. Hassan H. Ramadan

Prof. M. A. El-Sharkawy

(Shay Kang)
Head of Physics Department

Faculty of Science

Ain Shams University

ACKNOWLEDGMENT

I would like to thank **Prof. M. A. El-Sharkawy**, head of Physics Department for his valuable encouragement.

I would like to express my deep gratitude to Prof. Ali H. Moussa, Professor of Theoretical Physics, for suggesting the topics of this work and for his continuos encouragement and helpful discussions. His valuable advises and final revision of the thesis is highly appreciated.

I would like to express my deep appreciation to **Dr. Gaber Omar**, Assistant Professor of Theoretical Physics, for his continuos guidance during his supervision of this work. His sincere help in the revising of the thesis is highly appreciated.

I would like to thank **Dr. Hassan Ramadan**, Lecturer of Theoretical Physics, for his helpful and valuable discussions during this work.

The calculations are carried out at the Computer Center, Ain Shams University. The help offered by the staff is highly appreciated.

Abstract

The radiative rates (A_r 's), radiative life times (τ) and oscillator strengths (f-values) are calculated in AMA scheme for B-like Ne⁵⁺, Al⁸⁺, P¹⁰⁺, Ar¹³⁺ and Sc¹⁶⁺ ions. All bound-state wave functions needed in these calculations are generated using Hartree-Fock (SCHF) program. The trends of A_r 's. τ 's and f-values with atomic number (Z), effective charges (Z_{eff}) and principal quantum numbers n' (of upper levels) and n (of lower levels) are investigated. The f-values in AMA scheme are found in good agreement with that calculated in LS-coupling and MCFC (by others) for highly ionized ions.

TABLE OF CONTENTS

Summary	i
Chapter I : Introduction	1
Chapter II: Theoretical background for Oscillator Strengths and	
Related atomic Parameters	
2.1 Introduction	6
2.2 Electron transitions in atoms and ions	7
2.3 Statistical Weight (g)	7
2.4 The Einstein coefficients (transitions probabilities)	11
2.4.1 Relation between spontaneous and stimulated rates	14
2.4.2 Relation between spontaneous and absorption rates	16
2.4.3 Relation between the natural life time of the excited	
state and its radiative rate	17
2.5 Quantum Mechanical treatment of the atomic system	18
2.6 The electric dipole approximation	26
2.7 Classical formula for oscillating electron in one dimension	30
2.8 The Oscillator Strength	32
2.8.1 Definition	32
2.9 The dipole selection rules	34
2.10 Simple form of radiative rate	35
2.11 Relationships of oscillator strength and physical quantities 37	

Chapter	III	:	Radiative	transition	probability	for B	- like ions
---------	-----	---	-----------	------------	-------------	-------	-------------

3.1	Introduction	39
3.2	Results	42
3.2.1	Ne ⁵⁺ .	42
3.2.2	A18+.	54
3.2.3	p10+.	58
3.2.4	Ar ¹³⁺ .	62
3.2.5	Sc ¹⁶⁺ .	65
3.3	Radiative transitions trends with atomic parameters	68
3.3.1	Variation of A _r 's with (n')	68
3,3.2	Variation of A_r for B- like ions with effective charge (Z_{eff})	71
3.4	Effect of Alternative forms of effective charges on A _r forms	71
3.5	Radiative width and radiative life time	75
3.6	Conclusions	81
Chapter	IV : Oscillator Strengths for B- like ions	
4.1	Introduction	83
4.2	Comparison of the present work with the other	85
4.3	Radiative oscillator strengths for B- like ions	88
4.3.1	Ne ⁵⁺ .	88
4.3.2	$A1^{8+}$.	92
4.3.3	P ¹⁰⁺ .	95
4.3.4	Ar^{13+} .	98
4.3.5	Sc16+.	102

4.4	Trends of oscillator strength		105
4.4.1	Z- dependence of f- values		105
4.4.2	n'- dependence of f- values		109
4.4.3	n- dependence of f- values		113
4.5	Conclusions	116	

References

Arabic summary

SUMMARY

Summary

The thesis deals with the study of oscillator strengths (f-values) for B-like ions. These f-values are interrelated with the radiative transition probabilities (A_{Γ} 's) and life times (τ) of excited states. Thus, the f-values, A_{Γ} 's and τ 's are calculated for B-like Ne⁵⁺, Al⁸⁺, Pl⁰⁺, Ar¹³⁺ and Sc¹⁶⁺. Specifically, the emissive groups of transitions n's \rightarrow np, n'd \rightarrow np, n'p \rightarrow ns and n'p \rightarrow nd with n \leq n'; n' = 9,8,...,3 are involved in these calculations in details. The angular momentum average scheme (AMA) is utilized for all the calculations of f-values, A_{Γ} 's and τ 's. All bound state wave functions needed are generated using the single-configuration Hartree-Fock (SCHF) program (Froese Fischer code). The A_{Γ} 's for highly ionized ions are also calculated using the hydrogenic program and compared with their corresponding values which are calculated using SCHF.

The trends of f-values, A_{Γ} 's and τ 's with the atomic number (Z), effective charge (Z_{eff}) and principal quantum numbers (n', n) of upper and lower states included in the transitions are investigated. The results in this thesis may be summarized in the following points:

1- A_r for certain Δn transitions with $\Delta l = +1$ are 6 times larger than that with $\Delta l = -1$ for Ne⁵⁺. This ratio reaches 8 to 10 times for Ar¹³⁺and Sc¹⁶⁺.

- 2- A_{Γ} decreases rapidly with n' (of upper levels). Specifically, $A_{\Gamma} \sim /n^{13}$. The variation of A_{Γ} with n' is smooth. However, the variation of A_{Γ} with n (of lower level) is found to be of irregular behavior.
- 3- A_r increases as Z_{eff}^4 for the B-isoelectronic series. Z_{eff} , here, is taken as $(Z_I + Z_C)/2$, where Z_I is the degree of ionization and Z_c is the atomic number respectively.
- 4- The calculated A_r^{HF} from Hartree-Fock is approximately equal to A_r^{HP} calculated using the hydrogenic program with $Z_{eff} = \sqrt{Z_1 Z_C}$ for O^{3+} , and $Z_{eff} = (Z_1 + Z_C)/2$ for Ne^{5+} up to Sc^{16+} .
- 5- The radiative life times vary as $1/Z^{4.5}$. For example, the excited state 6s has $\tau = 1.8 \times 10^{-10}$ sec in Ne⁵⁺ case and decreases to $\tau = 4.33 \times 10^{-12}$ sec in case of Sc¹⁶⁺. In addition, τ varies as (n')^{2.5} where n' is the principal quantum number of upper levels.
- 6- f-values are found large for n'd \rightarrow 2p and the n'p \rightarrow 3s transitions. The transition 3d \rightarrow 2p has the largest f-values for B-like ions. f(3d \rightarrow 2p) is equal to 0.427, 0.506, 0.538, 0.570 and 0.591 for Ne⁵⁺, Al⁸⁺, P¹⁰⁺, Ar¹³⁺ and Sc¹⁶⁺ respectively.
- 7- f-values increase slowly with the atomic number (Z) i.e., decrease with 1/Z. However, these f-values are roughly independent of the effective charge (Z_{eff}), i.e. $f \sim Z_{eff}^0$.
- 8- f-values decrease as 1/n^{14.5}, where n' is the principal quantum number of upper level while these f-values increase with n which is the principal quantum number of lower level. The variation of f-values for 8d → np

transitions with n contains an accidental cancellation in case of Ne⁵⁺. This integral cancellation reduces the f-value at n = 6 by a factor of 10. Such cancellation does not appear for P^{10+} , Ar^{13+} and Sc^{16+} at any value of n.

9- The f-values in the present work are found in good agreement with that of other theoretical calculations which are done in different coupling schemes for some available transitions. These transitions are 3s → 2p and 3p → 3s in both O³⁺ and Ne⁵⁺ cases as well as 3s → 2p, 4s → 2p and 4s → 3p in Al⁸⁺ case. Presumably, as the degree of ionization increases the f-values in different methods are approximately equal. Thus, for quantitative study of f-values for other atomic series needed in plasma modeling, AMA is good enough to be used.

CHAPTER I

Chapter I

Introduction

Recently, it is well-known that knowledge of oscillator strengths is needed in astrophysical and laboratory plasmas as well as laser physics.

Oscillator strength has relationships with the atomic transition probabilities (Einstein-coefficients) which are playing an important role in laser research.

Oscillator strength is of special interest in atomic and molecular spectroscopy since it is related to radiative width and radiative life times of excited states as well as line strength and intensity of spectral lines.

Oscillator strength is of great interest also in atomic collisions. It is utilized in the calculations of the cross sections of atomic processes which are taking place in hot plasmas such as dielectronic recombination (Burgess, 1964, 1965), photo- Auger ionization (Lagattuta and Hahn 1982, Jayanti and Steven, 1986) and photo-excitation. These processes are important in self cooling and ionization balance in hot laboratory plasma and in solar corona.

Oscillator strength is required in testing the accuracy of wave functions in the transitions under considerations.

Because of the above reasons, there is a growing interest in the study of oscillator strengths especially for ions (Guet G. 1990, Fawcett B. 1991, Tiwary S. 1991 a, b, 1993, Zilitis V. 1992 and Hibbert A. 1993) since they are dominantly included in atomic collisions and may lead to the production of X-ray or lasers.

Oscillator strength is a dimensionless quantity which has been introduced before the advent of the quantum theory (Geoffery V., 1968) and used to denote the distribution of an atom or molecule to absorb or to emit radiation from a certain state. Its physical meaning can be understood through the fact that the polarizability (dipole moment induced by an electric field strength) of the atom is equal to the sum of polarizabilities of atomic oscillators in which each oscillator is represented with strength (f-value).

In the present work, it was planned to calculate radiative (emissive) oscillator strengths for the B-isoelectronic sequence. The calculation of oscillator strengths (f-values), radiative transition probabilities (A_{Γ} 's) and radiative life times (τ) depend mainly on the transition energy (ΔE) and the dipole matrix element (T).

All energies and wave functions needed in ΔE and T are generated using single-configuration Hartree-Fock (SCHF) program (Fischer code, 1977). These wave functions are employed in the matrix (MAT) program to calculate T and, in turn, gives out the radiative rates (A_r 's). Both SCHF and