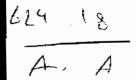
Ain-Shams University Faculty of Engineering

NONLINEAR ANALYSIS OF STEEL FRAMES

BY ALY ATWA ALY

B.SC., Structural Division


Civil Engineering Department

Ain - Shams University

A THESIS SUBMITTED IN

The Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering (Structural Engineering)

SUPERVISORS

Prof. DR. M. K. Zidan

Professor of Structural Engineering

Ain - Shams University

5°279

Dr. A. A. Mokhtar

Assist. Professor of Structural Engineering

Ain - Shams University

Cairo - Egypt 1993

To The Soul of My Father

STATEMENT

This Thesis is submitted to Ain Shams University for the degree of Master of science in Structural Engineering.

The work included in this thesis was carried out by the author in the department of structural Engineering, Ain Shams University, from November 1989 till October 1993.

No part of this thesis has been submitted for a degree or a qualification

Date: 6/11/1993

Signature: Aly Atwa Aly

Name: Aly Atwa Aly

APPROVAL SHEET

"Nolinear Analysis of Steel Frames"

By

Aly Atwa Aly

Approved by:

Prpf. Dr. El Sayed Bahaa Mashaly

Professor of Steel Structures

Cairo University

Prof. Dr. Adel Helmy Salem

Professor of Steel Structures

Ain- Shams University

Prof. Dr. Mostafa Kamel Zidan

professor of Structural Engineering

Ain-Shams University

Jab.

Date

Comittee in charge

Acknowledgement

I am greatly honoured to express my deepest gratitude and thanks to professor Dr. Mostafa Kamel zidan, professor of structural engineering, Ain-Shams university, for his kind supervison and constructive criticism, he exerted a lot of his time and effort to direct me to perfect this work. Very special thanks are also due to Dr. Abdel Salam Mokhtar, assistant professor of structural engineering Ain-Shams University for his great co-operation, persistent help and kind advice.

I am also indebted to my uncle, Dr. Abdel Kader Atwa for his kind encouragement. Finally, I present my deep gratitude to my parents.

AIN SHAMS UNIVERSITY

Faculty of Engineering Structural Department

Abstract of the M. Sc. Thesis Submitted by: Eng. Aly Atwa Aly

Title of Thesis: Nonlinear analysis of steel frames.

Supervisors: Prof. Dr. Mostafa Kamel Metwally Zidan

Dr. Abdel Salam Ahmed Moukhtar

Registration Date: 22/4/1991

ABSTRACT

This thesis deals with the nonlinear analysis of steel frames. The previous work in this field was reviewed. A mathematical model that describes the nonlinear behaviour of such structures was suggested. Also, the mathematical formulii necessary for the solution were presented. The nonlinear effects taken into account are: plasticity; instability; effect of material nonlinearity; effect of axial forces on the plastic bending moments, and effect of change of geometry. A computer program for the analysis was prepared and the results were verified by comparing them with previously published results. Based on the study performed, conclusions and suggestions for future studies were given.

CONTENTS

		Page No
	ACKNOWLEDGEMENT	i
	ABSTRACT	ii
	LIST OF FIGURES	viii
	LIST OF TABLES	хi
	NOTATIONS	x i v
	CHAPTER "1": INTRODUCTION	1
1.1.	Introduction	1
1.2.	Research Objectives	1
1.3.	Scope of Thesis	2
	CHAPTER "2": PREVIOUS WORK	3
	AND LITERATURE REVIEW	
2.1.	Introduction	3
2.2.	Elastic Nonlinear Analysis	3
2.3.	Spreading of Plasticity Method	4
2.4.	Plasticity concentrated at Nodes Method	9
2.5.	Effect of Axail Force on Plastic Moment	12
2.5.1.	Rectangular section subjected to plastic moment and	13
	axial force	
2.5.2.	I-Setion subjected to plastic moment and axial force	14

2.5.3.	Mono-symmetrical sections subjected to plastic 16
	moment and axial force
2.6.	Effect of Shear Force on Plastic Moment of 16
	Sections
2.6.1.	Rectangular section subjected to normal force, 18
	shear force and ultimate moment
2.6.2.	I-section subjected to normal force, shear force and 19
	ultimate moment
2.7.	Yield Function 20
2.8.	Yield Curve 22
2.8.1.	Yield Curve linearization 23
2.9.	Effect of Change of Geometry 24
2.9.1.	Member Co-ordinates systems 24
2.9.1.1	Euler co-ordinates
2.9.1.2	2. Lagrange co-ordinates 25
. 2.9.1.3	B. Lagrange -sr co- ordinates 25
2.9.2.	Average axial model-Lagrange-sr co-ordinates 25
2.9.2.1	Fixed co-ordinates 26
2.9.2.2	2. Updated co-ordinates 29
2.10.	Resolution of Nonlinear Systems 30
2.10.1.	Method of substitution 30
2.10.2.	Method of modified Newton- Raphson 31

		Page No
2.10.3.	Method of Newton-Raphson	32
2.10.4.	Incremental method (step by step)	32
	CILL DODED HOW MEMILOD OF ANALYSIS	
	CHAPTER "3": METHOD OF ANALYSIS	34
3.1.	Introduction	34
3.2.	Assumptions	34
3.3.	Incremental Elastic Analysis	35
3.4.	Elastoplastic Matrix	37
3.4.1.	Conditions for Plastic hinge formation	37
3.4.2.	Determination of elastoplastic matrix for members	38
3.5.	Plastic Multiplirer λ	42
3.6.	Yield Curve Linearization	43
3.7.	Effect of Change of Geometry	46
3.8.	Resolution Techinque of Nonlinear Analysis	47
3.9.	Steps of Analysis	47
3.10.	Effect of Material Nonlinearity	48
3.10.1.	Material nonlinearity due to plasticity at nodes	51
	CHAPTER "4": THE COMPUTER	53
	PROGRAM AND VERIFICATION	
	PROBLEMS	
4 1	Introduction	52

		Page No
4.2.	Block Flow Diagram	53
4.3.	Description of the Program	59
4.3.1.	Inpnt file	59
4.3.2.	Stiffness matrix	59
4.3.3.	Nonlinear analysis	60
4.3.4.	Output file	60
4.4.	Verification Problems	61
4.4.1.	Problem no. one	61
4.4.2.	Problem no. two	69
	CHAPTER "5": APPLICATION PROBLEMS	76
	FOR NONLINEAR ANALYSIS OF PLANE	
	FRAMES	
5.1.	Introduction	76
5.2.	Problem No. One	76
5.3.	Problem No. Two	82
5.4.	Problem No. Three	86
5.5.	Problem No. Four	89
5.6.	Problem No. Five	92
5.7.	Conclusions	96
	CHAPTER "6": CONCLUSIONS	97
6.1.	Introduction	97

		Page No
6.2.	Conclusions of Thesis	97
6.3.	Recommendations for Future studies	98
	REFERENCES	99
	APPENDIX "A" Computer Program	102

Figure	LIST OF FIGURES	Page No
No.		
2.1.	Node i is elastic, node j is elastic	10
2.2.	Node i is plastic node j is elastic	11
2.3.	Node i is elastic, node j is plastic	11
2.4.	Node i is plastic node j is elastic	12
2.5.	Rectangular Section Subjected to Plastic Moment	13
	and Axial Force	
2.6.	I-sectio Subjected to Plastic Moment and Axial	14
	Force	
2.7.	T-section Subjected to Plastic Moment and Axial	16
	Force	
2.8.	Shear and Normal Stresses on an Elment	17
2.9.	Rectangular section subjected to Normal and Shear	18
	Force	
2.10.	I- Section Subjected to Normal Force, Shear Force	19
	and Ultimate Moment	
2.11.	Yield Curve	22
2.12.	Yield Curves for Different Sections	22
2.13.	Linearization of Yield Surface by Equal Angles	23
2.14.	Linearization of Yield Curve by a Number of	23
	Hyperplanes	

2.15.	Geometry of Beam Element in Euler Member	24
	co-ordinates (P_1,P_2,Δ) , Lagrange Member	
	co-ordinates $(u_1,\!v_1,\!,\!\theta_2)$ and Global Co-ordinates	
2.16.	Lagrange. Sr Updated Coordinates	30
2.17.	Method of Substitution	30
2.18.	Method of Modified Newton-Raphson	31
2.19.	Method of Newton-Raphson	32
2.20.	Scheme of Incremental Method	32
3.1.	Nonlinear Stress- Strain Curve	35
3.2.	Assumed Degrees of Freedom of a Beam Finie	35
	Element	
3.3.	Consistency Condition	38
3.4.	Node i is Elastic, Node j is Elastic	38
3.5.	Node i is Plastic, Node j is Elastic	41
3.6.	Node i is Plastic, Node j is Plastic	42
3.7.	Yield Surface Linearization	44
3.8.	Stress- Strain Curve for Different Typo of steel	48
3.9.	Linearization of stress-strain curve	49
3.10.	Degrees of Freedom and Location of Integration	51
	points	
3.11.	I is plastic, J is elastic with Different signs in	52
	Moment	

3.12.	I is Elastic, j is Elastic with Different Signs in	52
	Moment	
3.13.	I is plastic, j is Plastic with Different Signs in	52
	Moment	
4.1.	Flow Chart of the Computer Program	54
4.2.	Single-Bay Pitched Roof Frame	62
4.3.	Load-Deflection Relationhip for the Pitched Roof	63
	Frame for $r = 0.001$	
4.4.	Load- Deflection Relationship for the Pitched Roof	64
	Frame for $r = 0.1$	
4.5.	Load- Deflection Relationship for the Pitched Roof	65
	Frame for $r = 0.3$	
4.6.	Load- Deflection Relationship for the Pitched Roof	66
	Frame for $r = 0.5$	
4.7.	Plastic Hinges at collapse	67
4.8.	Four Storey Frame	70
4.9.	Load. Deflection Relationship for the Multistorey	71
	Frame for $r = 0.1$	
4.10.	Load. Deflection Relationship for the Multistorey	72
	Frame for $r = 0.24$	
4.11.	Load- Deflection Relationship for the Multistorey	73
	Frame for $r = 0.5$	