
PHYSIOLOGICAL STUDIES ON POTATO TUBERIZATION UNDER ENVIRONMENTAL STRESS

 $\mathbf{B}\mathbf{y}$

AHMED ABDEL-NABY ARMED

B.Sc. In Horticulture, Cairo University, 1985 M.Sc. In Horticulture, Ain Shams University, 1994

635.21 A.A.

Thesis
Submitted in Partial Fulfillment of the
Requirements for the degree

of

DOCTOR OF PHILOSOPHY

In Agriculture Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University 55943

1999

APPROVAL SHEET

PHYSIOLOGICAL STUDIES ON POTATO TUBERIZATION UNDER ENVIRONMENTAL STRESS

By AHMED ABDEL-NABY AHMED

B.Sc. IN HORTICULTURE, CAIRO UNIVERSITY, 1985 M.Sc. IN HORTICULTURE, AIN SHAMS UNIVERSITY, 1994

This thesis for Ph.D. degree has been approved by:

1) Prof. Dr. SAMIR OSMAN EL-ABD Prof. Of Vegetable Crops, Horticulture Department, National Research Center.

2) Prof. Dr. IBRAHIM IBRAHIM EL-OKSH . I. El- C. S.H. Prof. Of Vegetable Crops, Chairman of Horticulture Department, Ain Shams University.

3) Prof. Dr. AYMAN FARID ABOU-HADID
Prof. Of Vegetable Crops,
Faculty of Agriculture,
Ain Shams University.

Date of examination: 9 / 8 / 1999

PHYSIOLOGICAL STUDIES ON POTATO TUBERIZATION UNDER ENVIRONMENTAL STRESS

BY

AHMED ABDEL-NABY AHMED

B.Sc. In Horticulture, Cairo University, 1985 M.Sc. In Horticulture, Ain Shams University, 1994

Under The Supervision of:

Prof. Dr. Ayman F. Abou-Hadid Prof. of Vegetables, Fac. Agric. Ain Shams University

Prof. Dr. Mohamed S.El-Beltagy
Prof. of Vegetables, National Research Center

ABSTRACT:

Ahmed Abdel-Naby Ahmed, Physiological Studies on Potato Tuberization under Environmental Stress, Unpublished Doctor of Philosophy, Ain Shams University, Faculty of Agriculture, Department of Horticulture, 1999.

Growth and productivity of potato plants were reduced significantly with increasing salt concentrations used from 2000 to 6000 ppm. Application of calcium reduced the harmful effects of salinity on the growth and yield of potato plants but highest level of calcium (2 gm Ca²⁺/plant) under saline conditions reduced the productivity of potato plants. High temperatures significantly reduced the yield of potato plants. Using calcium under unfavorable conditions for potato vield was mitigated the harmful effects of high temperatures on the productivity of potato plants. High two levels of calcium concentrations (28.2 and 34.8 gm Ca²⁺/plant) were contributed to the stress on the potato plants under unfavorable conditions. Using intercropping maize or sunflower plants with potato plants during the early stages of potato growth in the early fall season increased the yield of potato plants. In addition, there was an increment of the productivity of potato plants intercropped with different planting densities of maize or sunflower plants (75 and 100 cm). This increment was significant compared to the potato plants without intercropping in the early fall season. Moreover, it can overcome marketing fluctuation of potato yield in the off season.

Key Words: Potato (Solamum tuberosum L.).Cultivars (Cara, Salany, Diamant, Nicola, Berber, Alpha, Cludia and Spunta).Hybrid (Serrana x, LT-7).Stress (Salinity and Heat).Salt concentrations (2000, 4000 and 6000 ppm).Calcium levels (0.25, 0.5, 1.0, 2.0, 6.6, 15, 21.6, 28.2 and 34.8 gm Ca²/plant).Intercropping (potato with maize or sunflower).Different planting densities of maize and sunflower plants (50, 75, 100 and 125 cm).Seed tubers. Potato yield.

Acknowledgement:

First of all, I would like to express my deepest thanks to "Allah" who gave me the power, knowledge and helping me to carry out and finish this work.

ŧ,

I would be honored to convey my deepest thanks and true gratitude to Prof. Dr. Mohamed El-Sayed El-Beltagy, Professor of Vegtable crops, Horticulture Dept., National Research Center, for planning, supervising, constructive guidance, valuble help, advice and supporting this research.

Great thanks are expressed as well to Prof. Dr. Ayman Faried Abou-Hadid, Professor of Vegetable crops, Department of Horticulture, Ain Shams Univ. for his continuous advice and support throughout this thesis.

I am also indebted to Dr. Ramzy El-Bedewy, director of International potato center (CIP), at Kafr El-Zayat, Egypt for fruitful help, cooperation to fulfill this work and facilities given to me in agricultural farm, for his valuable advice and supporting this research. I would like to thank the team work of International Potato Center (CIP) for their serious assistance throughout this work.

I would like to thank the team work of Arid Land Research Unit, Faculty of Agriculture, Ain Shams University.

I would like also to thank the team work of El-Bosaily site of protected cultivation, El-Behira governorate, Egypt.

Thanks to the Horticulture Dep., Faculty of Agriculture, Ain Shams University

Thanks also should be given to the Horticulture Research Dept., at the National Research Center, for supporting during conducting the research.

My supreme gratitude and appreciation to my small family.

Contents

No.		Pag
1.	Introduction	× 48
2.	Review of Literature	
2.1	The response of potatoes (Solanum	,
	tuberosum L.) to salinity	
2.2	Effect of salinity on the number of plants	
2.3	Effect of salinity on the emergence	-
	percentage	4
2.4	Effect of salinity on plant growth	4
2.5	Effect of water salinity on yield	6
2.6	Role of calcium in plants	_
2.7	Role of calcium in salinity stress	7
2.8	Role of calcium in plant responses to	9
	stress	1.0
2.8.1	Potato tuber quality and Ca ²⁺	10
2.8.2	Role of calcium in heat stress	12
2.8.3	Physiological basis for mitigation of heat	12
	stress effects on potato	
2.9	Effect of calcium application on the potato	13
	yield	1.0
2.9.1	Heat stress and the tuberization stimulus	13
2.9.2	Heat stress and reduction in overall	14
	growth	
2.9.3	Heat stress and partitioning to tubers	14
2.9.4	Diurnal and seasonal variation in	15
	temperature	1.0
2.9.5	The tuberization stimulus and tuber	16
	enlargement	
2.9.6		17
	Effects of temperature on the development	10
2.9.7	of the haulm of potato plants	18
2.9.7.1	Effect of temperature on potato crop Effect of temperature on the development	19
-	of tubers of potato plants	
	or rapora or potato plants	21

2.9.8	Intercropping potato with maize plants	23
3.	Material and Methods	25
3.1	Effect of different levels of salinity on the	
3.1	haulm and yield of potato plants	25
1.1	Effect of different levels of calcium under	
3.2	salinity on the haulm growth and yield of	
	potato plants	26
2.2	Effect of different levels of calcium under	
3.3	high temperatures on the potato	
	plants	26
2.4	Off season planting of early fall potato	28
3.4	Fertilizers application of intercropping	
3.4.1	potato with maize and sunflower	30
	Intercropping potato with different	
3.5	densities of maize and sunflower	30
	C :	
3.5.1	Fertilizers application of intercropping potato with different densities of maize and	
	sunflower	31
	Results	32
4.	Effect of different levels of salinity on the	
4.1	haulm and yield of potato plants in the two	
	successive spring seasons 1996 and 1997	32
	Effect of different levels of salinity on the	
4.1.1	chlorophyll content of potato leaves	32
	Effect of different levels of salinity on the	
4.1.2	plant length of potato plants	32
	plant length of polato plants	
	Effect of different levels of salinity on the	
4.1.3	Effect of different revels of samine, or a	36
	stem number of potato plants Effect of different levels of salinity on the	
4.1.4	Effect of different levels (if same)	36
	leaves number of potato plants Effect of different levels of salinity on the	
4.1.5	Effect of different levels of samely on the	36
	total leaf area of potato plants	
4.1.6	Effect of different levels of salinity on the	

	dry weight to fresh weight ratio of haulm	
	of potato plants	40
4.1.7	Effect of different levels of salinity on the	
	total soluble solids of potato tubers	40
4.1.8	Effect of different levels of salinity on the	, ,
	specific gravity of potato tubers	40
4.1.9	Effect of different levels of salinity on the	
	yield per plant	44
4.2	Effect of different levels of calcium under	
	saline on the haulm and yield of potato	
	plants in the two successive spring seasons	
	1997 and 1998	44
4.2.1	Effect of different levels of calcium under	
	saline on the plant length of potato plants.	44
4.2.2	Effect of different levels of calcium under	
	saline on the stem number of potato plants.	44
4.2.3	Effect of different levels of calcium under	
	saline on the chlorophyll content of potato	
	plants	47
4.2.4	Effect of different levels of calcium under	
	saline on the leavs number of potato plants.	47
4.2.5	Effect of different levels of calcium under	
	saline on the total leaf area of potato	
	plants	47
4.2.6	Effect of different levels of calcium under	
	saline on the dry weight to fresh weight	
	ratio of haulm of potato plants	50
4.2.7	Effect of different levels of calcium under	
	saline on the dry weight to fresh weight	
	ratio of tubers of potato plants	50
4.2.8	Effect of different levels of calcium under	
	saline on the specific gravity of tubers of	
	potato plants	50
4.2.9	Effect of different levels of calorum under	

4.2.10	saline on the total soluble solids of tubers of potato plants Effect of different levels of calcium under	50
4.3	Effect of different levels of calcium under heat stress on the haulm and yield of potato plants in the two successive early fall	52
4.3.1	seasons 1996 and 1997 Effect of different levels of calcium under	52
	heat stress on the plant length of potato plants Effect of different levels of calcium under	52
4.3.2	heat stress on the stem number of potato	52
4.3.3	Effect of different levels of calcium under heat stress on the total chlorophyll content	. 1
4.3.4	of potato plants Effect of different levels of calcium under	55
	heat stress on the leaves number of potato plants Effect of different levels of calcium under	55
4.3.5	heat stress on the total leaf area of potato	55
4.3.6	Effect of different levels of calcium under heat stress on the dry weight to fresh	
4.3.7	weight ratio of haulm of potato plants Effect of different levels of calcium under	58
	heat stress on the dry weight to fresh weight ratio of tubers	58
4.3.8	Effect of different levels of calcium under heat stress on the specific gravity of potato tubers	58
4.3.9	Effect of different levels of calcium under heat stress on the total soluble solids of	