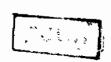
AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

STUDY OF PLATE BENDING ELEMENT SUITABLE FOR THICK AND THIN PLATES

BY


YASSER GALAL ELDIN MOHAMED FAHMY

B. SC. IN CIVIL ENGINEERING (STRUCTURAL DIVISION)
AIN SHAMS UNIVERSITY 1990

THESIS SUBMITTED FOR PARTIAL
FULFILLMENT OF THE DEGREE OF MASTER
OF SCIENCE IN CIVIL ENGINEERING

624.1776 Y. G

SUPERVISED BY

Prof. Dr. MOUSTAFA K. ZIDAN

PROFESSOR OF STRUCTURAL ENGINEERING - FACULTY OF ENGINEERING - AIN SHAMS UNIVERSITY Dr. ABDEL SALAM A. MOKHTAR

ASSOC. PROF. OF STRUCTURAL ENGINEERING - FACULTY OF ENGINEERING - AIN SHAMS UNIVERSITY

Dr. SAMIR A. HEKAL

ASSIST. PROF. OF STRUCTURAL ENGINEERING
FACULTY OF ENGINEERING
AIN SHAMS UNIVERSITY

Cairo 1995

Examiners committee

Name and Affiliation

Signature

1- Prof. Dr. ABDEL RHMAN S. BAZARAA
PROFESSOR OF STRUCTURE ENGINEERING
FACULTY OF ENGINEERING,
CAIRO UNIVERSITY

Bazaraa

2- Prof. Dr. ADEL H. SALEM
PROFESSOR OF STRUCTURE ENGINEERING
FACULTY OF ENGINEERING,
AIN SHAMS UNIVERSITY

3- Prof. Dr. MOUSTAFA K. ZIDAN
PROFESSOR OF STRUCTURE ENGINEERING
FACULTY OF ENGINEERING,
AIN SHAMS UNIVERSITY

of Eider

4- Dr. ABDEL SALAM A. MOKHTAR
ASSOC. PROF. OF STRUCTURE ENGINEERING
FACULTY OF ENGINEERING,
AIN SHAMS UNIVERSITY

Makhtar

DATE:

STATEMENT

The dissertation is submitted to Faculty of Engineering, Ain Shams University for degree of MASTER OF SCIENCE in Civil Engineering (Structural Division).

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Faculty of Engineering, Ain Shams University, from 1992 to August 1995.

No part of this thesis has been submitted for a degree or a qualification to any other university or institution.

Name: Yasser Galal Eldin Mohamed Fahmy

Date: / / 1995

Signature: Jasser Fahmy

ACKNOWLEDGMENT

The author is deeply indebted to his professors and colleagues who offered their help in the preparation of this thesis. Particular thanks to professor Dr. M. ZIDAN for supervising the work.

The thesis would not be complete without the valuable advice of Dr. A. MOKHTAR especially in preparing the computer program.

Thanks are also due to Dr. S. HEKAL for checking the scientific material and for the great assistance from the inception to the completion of this work.

Finally, The author is indebted to all members of his family for their continuous encouragement to complete this work.

Structural Department

Abstract for master of science thesis by Eng. Yasser Galal Eldin Mohamed Fahmy.

Title: Study of plate bending element suitable for thick and thin plates.

ABSTRACT

The finite element method is a powerful numerical technique for the analysis of plates. However, direct applications of the *REISSNER-MINDLIN* plate theory for the derivation of plate elements suitable for analyzing thick and thin plates lead to very disappointing results.

The purpose of this research is to derive a plate bending element valid for thick and thin plate situations. The condition used for the derivation of this plate element is the vanishing of the shear strain for the thin plate limit. This is achieved by defining the approximating shear strain polynomial as a linear function for both nodal rotations and deflections.

A simple explicit form of the substitute shear strain matrix is, thus, obtained. The general methodology is applied to the re-formulation of some well-known 4 and 9 node quadrilateral plate elements.

Computer programs have been developed for 4, 8 and 9 noded quadrilateral elements based on the formulation mentioned above. Some numerical examples demonstrate the use of the developed technique to improve the behavior of the elements. Comparison between the results from this technique and other methods is given to show the advantage of the new formulation. The performance of the 9-node Lagrangian element with the new technique is near to the optimal.

TABLE OF CONTENTS

Chapter	page
1. INTRODUCTION	1
1-1 General Remarks	1
1-2 The Purpose of the Present Research	
1-3 Scope of the Present Thesis	
2. LITERATURE REVIEW	4
2-1 General	4
2-2 Theory of Plates	4
2-3 Finite Element Method in the Field of Plates	
2-3-1 Two Dimensional Elements Based on	
KIRCHHOFF Plate Theory	8
2-3-2 Two Dimensional Elements Based on	
REISSNER-MINDLIN Plate Theory	10
2-4 Locking	10
2-5 Reduced and Selective Integration	10
3. PROPOSED METHOD OF ANALYSIS USING THE	
FINITE ELEMENT TECHNIQUE	11
3-1 General	11
3-2 Summery of the Finite Element Procedure	12
3-3 Analysis of Plates	23
3-3-1 Shape Function for Two Dimensional C(0)	
Elements (Rectangular Elements)	23
3-3-2 Isoparametric Representation	27
3-3-3 Numerical Integration	
3-4 Derivation of Element Stiffness Matrix, Element	
Stresses and Representation of Loads	32
3-4-1 Element Stiffness Matrix	32
3-4-2 Element Stresses	39
3-4-3 Representation of Loads	41

Chapter	page
3-5 Locking	. 42
3-5-1 Thin Plate Limit	. 42
3-5-2 Four Node Rectangular	
REISSNER-MINDLIN Plate Element	. 43
3-5-3 Some Remedies to Avoid Locking	. 43
3-5-4 Choice of Substitute Strain Fields	. 44
3-5-5 General Methodology for the Derivation of	
Substitute Shear Strain Matrix Bs	. 46
3-5-6 Proof of the Singularity Rule for K _S	. 48
3-5-7 Application to Some Plate Elements	. 50
3-5-7-1 Four Node Quadrilateral Plate Element	
With Linear Shear Strain	. 50
3-5-7-2 Nine Node Quadrilateral Plate Element	
With Quadratic Shear Strain	. 52
4. COMPUTER ANALYSIS	58
4-1 General	58
4-2 Glossary of Variable Names	59
4-3 Main Program	60
4-4 Input Subroutine (SDATA*)	
4-5 Stiffness Subroutine (STIFF*)	67
4-6 Computer Solution Routines	67
4-6-1 Subroutine for Factorization of Stiffness	
Matrix (SKYFAC)	73
4-6-2 Solution Subroutine (SKYSOL)	78
4-7 Output and Stress Resultant	
Subroutine (RESUL*)	78
5. NUMERICAL EXAMPLES AND DISCUSSIONS	85
5-1 Introduction	85
5-2 Example 1	85
5-3 Example 2	87
5-4 Example 3	88
5-5 Example 4	89

Chapter	page
5-6 Discussion on the Results of the First	
Four Examples	89
5-7 Example 5	100
6. CONCLUSIONS, RECOMMENDATIONS AND	
FUTURE WORK	103
6-1 Conclusions	103
6-2 Recommendations	104
6-3 Future Work	104
REFERENCES	105
APPENDICES	108

LIST OF FIGURES

Figur	re Page
Fig.(2-1)	Kirchhoff plate notation9
Fig.(2-2)	Notation for Mindlin plate
Fig.(3-1)	Different types of finite elements
Fig.(3-2)	Natural coordinates for the rectangular element 24
Fig.(3-3)	4, 8 and 9 node rectangular elements
Fig.(3-4)	Plane view showing 4, 8 and 9 node
	isoparametric elements with natural coordinates 29
Fig.(3-5)	Integration points for quadrilateral: (a) n=1
	(b) n=2 (c) n=3 (d) n=431
Fig.(3-6a)	Global coordinates system
Fig.(3-6b)	Isoparametric 8 node element with local
	coordinate system
Fig.(3-7a)	Typical displacements of point p40
Fig.(3-7b)	Positive directions for displacements
Fig.(3-8a)	A differential element of plate
Fig.(3-8b)	Resultant of stresses
Fig.(3-9)	Assumed shear strain field for 4 node
	quadrilateral element45
Fig.(3-10)	displacements and shear strain variables 57
Fig.(4-1)	Flow chart for main program61
Fig.(4-2)	Flow chart for subroutine (SDATA*)62
Fig.(4-3)	Flow chart for subroutine (STIFF*)
Fig.(4-4)	Flow chart for subroutine (BMATQ4)71
Fig.(4-5)	Flow chart for subroutine (BSSTAR)72
Fig.(4-6)	" Skyline " of matrix A stored as a vector
Fig.(4-7)	Flow chart for subroutine (SKYFAC)75
Fig.(4-8)	Flow chart for subroutine (SKYSOL)79
Fig.(4-9)	Flow chart for subroutine (RESUL*)81
Fig.(5-1)	A Quarter of square plate modelled with 4 node
	quadrilateral elements. (S.S.) or (CL) edge under (q) or
	(p). Mesh 4*4
Fig.(5-2)	Simply supported square plate under uniform load with
	substitute shear strain technique. Convergence study for
	thick and thin plates with substitute shear strain technique 92

Figur	Page Page
Fig.(5-3)	Simply supported square plate under uniform load
	with different techniques
Fig.(5-4)	Fully clamped edge square plate under uniform
	load with substitute shear strain technique.
	Convergence study for thick and thin plates with
	substitute shear strain technique
Fig.(5-5)	Fully clamped square plate under uniform load
	with different techniques
Fig.(5-6)	Simply supported square plate under central load.
	Convergence study for thin plate with substitute
	shear strain technique
Fig.(5-7)	Simply supported square plate under central load
	with different techniques
Fig.(5-8)	Fully clamped square plate under central load with .
	Convergence study for thin plate substitute
	shear strain technique
Fig.(5-9)	Fully clamped square plate under central load
	with different techniques
Fig.(5-10)	Ship rudder with uniform pressure is modelled by using
	8 node quadrilateral element. Mesh 4*4 102

LIST OF TABLES

Table	J	age
Table (3-1)	Coefficients for Gaussian quadrature	30
Table (4-1)	List of program notation for 4 node	
	quadrilateral element	59
Table (4-2)	Preparation of data for program MPBQ4	60
Table (4-3)	Integration rules for Lagrangian and serendipity	
	elements under different techniques	67
Table (4-4)	Integer identifiers used in subprograms	
	(SKYFAC) and (SKYSOL)	. 74
Table(5-1)	The max, deflection on the free edge of the rudder	100

LIST OF NOTATIONS

Symbol	Definition
[A]	Nodal displacement-constants matrix
[B]	Strain-displacement matrix
[B _b]	Curvature-displacement matrix
[B _s]	Standard shear strain matrix
$\left[\hat{\mathbf{B}}_{s} ight]$	Substitute shear strain matrix
[C]	Cartesian-natural shear strain matrix at sampling points
[CN]	Nodal coordinate matrix
[D]	Diagonal matrix
[D _b]	Moment-curvature matrix
[D _s]	Shear force-shear strain matrix
[E]	Stress-strain matrix
E	Elastic modulus
G	Shear modulus
[]]	Jacobian matrix
[K]	Element stiffness matrix
{ M }	Generalized bending moment vector
M_X , My , Mxy	Components of bending moment
[N]	Shape function matrix
{ P }	Nodal load vector
[PF]	Partial derivatives w.r.t local coordinates matrix
{ Q }	Transverse shear force vector
Q_x , Qy	Components of transverse shear force
[T]	Transformation matrix
{ U }	Generic displacement vector
[U]	Upper triangle matrix
b	Subscript denoting bending
{ b }	Body force vector for element
d	Linear differential operator
e	Superscript denoting element
f	Function
i	Index
j	Index

Symbol	Definition
k	Index
n	Number
{ q }	Nodal displacement vector
S	Subscript denoting shear
t	Thickness of plate
u	Translation in x direction
v	Translation in y direction
w	Translation in z direction
\mathbf{x}	Cartesian coordinate
у	Cartesian coordinate
z	Cartesian coordinate
α	Warping coefficient
{ a }	Constants vector
{ y }	Shear strain vector
γх ,γу	Components of shear strain
{ε}	Normal strain vector
ε_x , ε_y	Components of normal strain
η	Natural coordinate
{θ}	Rotation vector
$\theta_{\mathbf{x}}$, $\theta_{\mathbf{y}}$	Components of rotation
ν	Poisson's ratio
ξ	Natural coordinate
{σ}	Normal stress vector
σ_x, σ_y	Components of normal stress
{ \tau }	Shear stress vector
τ_{xz} , τ_{yz}	Components of shear stress
τ_{xy}	Shear stress in plane
[Generic displacement-constant matrix
{ x }	Curvature vector
χ_{x} , χ_{y} , χ_{xy}	Components of curvature

Chapter (1)

INTRODUCTION