

STUDIES ON THE IN VITRO CULTURE OF TISSUES FROM DIFFERENT ORGANS OF STRAWBERRY PLANT (Fragaria X ananassa Duch)

By

AWATIF FOUAD MEKAIL

B. Sc. Agric. (Horticulture), Ain Shams Univ., 1987

Under the supervision of:

Prof. Dr. Khalifa Attia Okasha

Prof. of Horticulture, Faculty of Agric., Ain Shams Univ. and Director of Horticulture Research Institute, Agriculture Research Center.

Prof. Dr. Mohamed Kamal EL-Bahr

Head of Plant Cell and Tissue Culture Department, National Research Center.

APPROVAL SHEET

STUDIES ON THE IN VITRO CULTURE OF TISSUES FROM DIFFERENT ORGANS OF STRAWBERRY PLANT (Fragaria X ananassa Duch)

By

AWATIF FOUAD MEKAIL

B. Sc. Agric. (Horticulture), Ain Shams Univ., 1987

This thesis for M. Sc. degree has been approved by:

Prof. Dr.: Mohmed El-Saied Zaki M. EL-Saied Zaki Head of Horticulture Department and Prof. of Vegetable Crops, Faculty of Agric., Moshtohor, Zagazig Univ. (Benha branch).

Prof. Dr.: Refaat Mohamed Helal R. M. Helal Prof. of Vegetable Crops, Faculty of Agric., Ain Shams Univ.

Prof. Dr.: Khalifa Attia Okasha Kh. - Q - Chasher Prof. of Horticulture, Faculty of Agric., Ain Shams Univ. and Director of Horticulture Research Institute, Agriculture Research Center (Supervisor)

Date of Examination: 21/2/1996.

ABSTRACT

Awatif Fouad Mekail. Studies on the in vitro culture of tissues from different organs of strawberry plant (*Fragariax ananassa* Duch). Unpublished Master of Science, University of Ain Shams, Faculty of Agriculture, Department of Horticulture, 1996.

This study was carried out during the period from 1992 to 1995 at the Strawberry and Non Traditional Crops Center, Faculty of Agriculture, Ain Shams University.

The object of this study was to evaluate the different in vitro propagation methods of strawberry plant, i.e. runner tip, immature fruit and leaf tissues in the subsequent micropropagation stages.

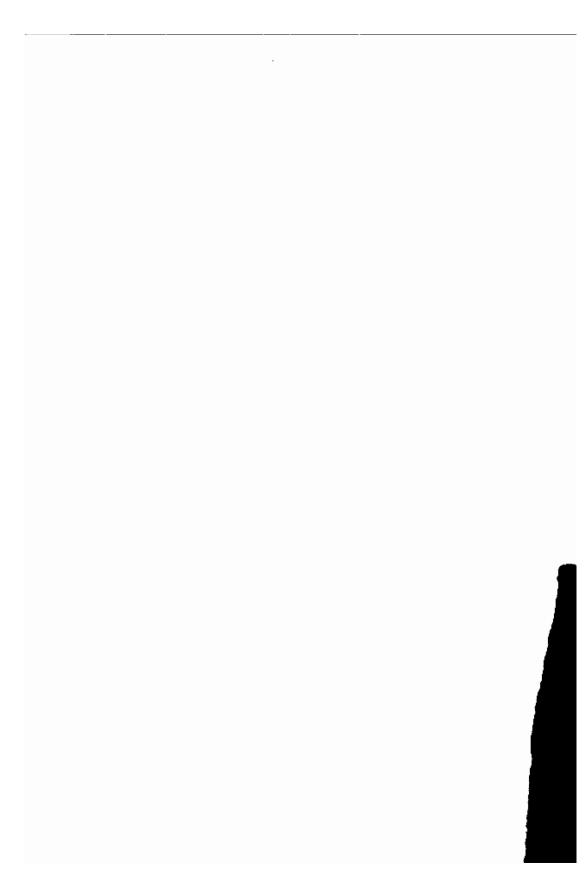
Results indicate that using runner tip of 1, 2 and 3 mm length gave 85, 90 and 100 in vitro survival percentage, respectively. Shoots produced from the smallest runner tip (1 mm) showed the lowest values of root length and number compared with the other two lengths. The best cullus formation was attained when leaf, fruit and runner tip explants were cultured on MS-medium containing 0.2 mg/l BA+0.5 mg/l 2, 4-D followed by 0.2 mg/l BA+1 mg/l 2, 4-D and 0.5 mg/l BA+1.0 mg/l 2, 4-D.

The growth dynamics of calli derived from the three types of explants, cultured individually on the three chosed culture media mentioned above were determined. Among the three culture media, it was observed that supplementation of MS-medium by 0.2 mg/1BA+0.5 mg/1 2, 4-D gave the best growth of leaf derived callus. The increment rate in both fresh and dry weight as well as the growth rate of fruit callus were increased by increasing the time of culture on the three tested media. However, the highest values of growth parameters was obtained using medium contained 0.5 mg/1 BA + 1.0 mg/1 2, 4-D.

The study concluded that sixty four clores were obtained from

immature fruit callus while seventeen clones were obtained from runner tip callus. On the other hand, leaf callus failed to produce any shoots on the different differentiation media.

Key words: Strawberry, Tissue culture, Callus induction, Clone.


ACKNOWLEDGEMENT

I would like to express my deepest thanks and gratitude to Prof. Dr. Kh. A. Okasha, Professor of Horticulture, Faculty of Agriculture, Ain Shams University and Director of Horticulture Research Institute, Agriculture Research Center for suggesting the current study, supervision, kind support, continuous help and preparation of the manuscript.

I am also thankful to Prof. Dr. M. K. EL-Bahr, Head of Plant Ceil and Tissue Culture Department, National Research Center for his supervision, valuable advice and preparation of the manuscript.

My sincere thanks to Dr. Mohamad I. Ragab, Lecturer of Vegetable crops, Faculty of Agriculture, Ain Shams University for his kind support and valuable help during carrying out this work.

I am also thankful to all members of the Horticulture Department and the Strawberry and Non-Traditional Crops Center, Ain Shams University for their help.

CONTENTS

•	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	2
3. MATERIALS AND METHODS	28
4. RESULTS AND DISCUSSION	36
4.1. Sterilization of fruit and leaf explant	36
4.2. In vitro experiments on shoot tip length	38
4.3. Callus production in tissue culture	46
4.4. Shoot production in tissue culture	63
4.5. Shoot multiplication	. 73
4.6. Root regeneration	
4.7. Transplanting	73 75
5. SUMMARY AND CONCLUSION	7.) 89
6. REFERENCES	94
7. ARABIC SUMMARY	
** ARTURO OVERHARI ************************************	110

LIST OF TABLES

Table		Page
Α	Composition of meristem culture media (Damiano,	
	1980)	
В	Composition of basal medium of Murashige and	
	Skoog (1962) and some other components	
1	Effect of different sterilization treatments on	
	contamination % and survival % of fruit and leaf	
	explant of Strawbery	37
2	Effect of shoot tip length on the survival (%) and	
	shootinduction (%) of strawberry	39
3	Effect of shoot tip length on the shoots number and	
	shoot length of strawberry	42
4	Effect of shoot tip length on the root length and	
	rootsnumber of strawberry	45
5	Cullus induction (%) from Strawberry leaf explant,	
	cultured 6 weeks on MS-medium supplemented with	
	different combinations of BA and 2, 4-D	48
б	Cullus induction (%) from Strawberry shoot tip	
	explant, cultured 6 weeks on MS-medium	
	supplemented with different combinations of BA	
	and 2, 4-D	49
7	Cullus induction (%) from Strawberry fruit explant,	
	cultured 6 weeks on MS-medium supplemented with	
	different combinations of BA and 2, 4-D	51
8	Fresh and dry weight of leaf derived callus,	
	cultured five weeks on MS-medium supplemented	
	with three combinations of BA and 2, 4-D	54

	2.4-D	Page 61
9	Callus tissues derived from shoot tip (M), leaf (L)	01
	and fruit (F) of strawberry at the day of	
	culturing (frist passage) on MS-medium	
	supplemented by 0.2 mg/l BA + 0.5 mg/l 2, 4 D (A)	
	and after four weeks on the same medium (B)	65
10	Callus of leaf (L) and shoots regenerated from	
	cullus of shoot tip (M) and fruit (F) of	
	strawberry, after two weeks of subculturing	
	(second passage) on MS-medium supplemented by	
	0.2 mg/l BA + 0.5 mg/l 2, 4 D	67
11	Shoots regenerated from cullus of shoot tip (M)	•
••	and fruit (F) of strawberry, after four weeks of	
	subculturing (second passage) on MS-medium	
	supplemented by 0.2 mg/l BA + 0.5 mg/l 2, 4 D	68
12	Leaf derived cullus of strawberry, after several	00
	culturing on MS-medium supplemented by 0.2	
	mg/1 BA + 0.5 mg/1 2, 4 D	69
13	Shoots regenerated from cullus of shoot tip (M)	0,
	and fruit (F) of strawberry, after four weeks of	
	subculturing (third passage) on MS-medium	
	supplemented by 0.2 mg/l BA + 0.5 mg/l 2, 4 D	70
14	Root formation on strawberry shoots after one,	70
	two and three weeks (from right to left) of	
	culture on MS-medium contained 1.0 mg/lIBA	74
15	Strawberry transplants before culturing in peat-	
	sandmixture	76
16	Four new strawberry clones (the left control) was	
	produced from runner tip method. Clones 1-4	87
17	were produced from callus meristem	
	Eight new strawberry clones, the left (control)	
<u>:</u>	was produced from runner tip method. Clones	4
	from 1-8 were produced from callus immature	
	fruit	8

LIST OF FIGURES

Figure		Page
1	Development of strawberry runner tips excised	
	by three lengths: 1 mm (S), 2 mm (M) and 3 mm (L)	
	after 4 weeks of culture	40
2	Development of strawberry shoot tips excised by	
	three lengths: 1 mm (S), 2 mm (M) and 3 mm (L)	
	after 2 weeks of culture	43
3	Development of strawberry shoot tips excised by	
	three lengths: 1 mm (S), 2 mm (M) and 3 mm (L)	
	after 4 weeks of culture	44
4	Shoot tip (M), Leaf (L) and fruit (F) explants of	
	strawberry at the day of culture on MS-medium	
	supplemented by different combinations of BA	
	and 2, 4-D	47
5	Fresh weight (F.W.) and dry weight (D.W.) of leaf	
	derived callus, cultured five weeks on MS-medium	
	supplemented with three combinations of BA and	
	2,4-D	55
6	Increase value (I.V.) by fresh weight (F.W.), dry	
	weight (D.W.) and growth rate (G.R.) of leaf	
	${\tt derived callus, cultured five weeks on MS-medium}$	
	supplemented with three combinations of BA and	
	2,4-D	57
7	Fresh weight (F.W.) and dry weight (D.W.) of fruit	
	derived callus, cultured five weeks on MS-medium	
	supplemented with three combinations of BA and	
	2,4-D	5 9
2	Increase value (I.V.) by fresh weight (F.W.), dry	
	weight (D.W.) and growth rate (R.) of fruit	
	derived callus, cultured five weeks on MS-medium	
	supplemented with three combinations of BA and	

Table		Page
9	Increase value by fresh, dry weight and growth	
	rate of leaf derived callus, cultured five weeks on	
	MS-medium supplemented with three	
	combinations of BA and 2, 4-D	5 6
10	Fresh and dry weight of fruit derived callus	,
	cultured five weeks on MS-medium supplemented	1
	with three combinations of BA and 2, 4-D	. 58
11	Increase value by fresh, dry weight and growth	n
	rate of fruit derived callus, cultured five weeks or	n
	MS-medium supplemented with three combinations	s
	of BA and 2, 4-D	. 60
12	Shoot length, root length and roots number of	
	strawberry somaciones derived from meristem	
	callus after 5 weeks of culture on rooting medium.	78
13	Shoot length, root length and roots number of	
	strawberry somaclones derived from super	
	meristem callus after 5 weeks of culture on	
9	rooting medium	. 79
14	Shoot length, root length and roots number of	
	strawberry somaclones derived from fruit callus	
	after 5 weeks of culture on rooting medium	. 80
15	Shoot length, root length and roots number of	
	strawberry somaclones derived from fruit callus	
	after 5 weeks of culture on rooting medium	82
16	Shoot length, root length and roots number of	
	strawberry somaclones derived from fruit callus	
	after 5 weeks of culture on rooting medium	. 83
17	Shoot length, root length and roots number of	
	strawberry somaclones derived from fruit callus	
	after 5 weeks of culture on rooting medium	. 85
18	Shoot length, root length and roots number of	
	strawberry somaclones derived from fruit callus	
	after 5 weeks of culture on rooting medium	86