AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

A STUDY OF THE EFFECT OF EXHAUST GAS RECIRCULATION ON THE PERFORMANCE AND COMBUSTION OF DIESEL ENGINES

Ву

52183

Eng. Ibrahim El-Dsoky Taha Elkeiy

A thesis

Submitted in Partial Fulfilment for The Requirement of

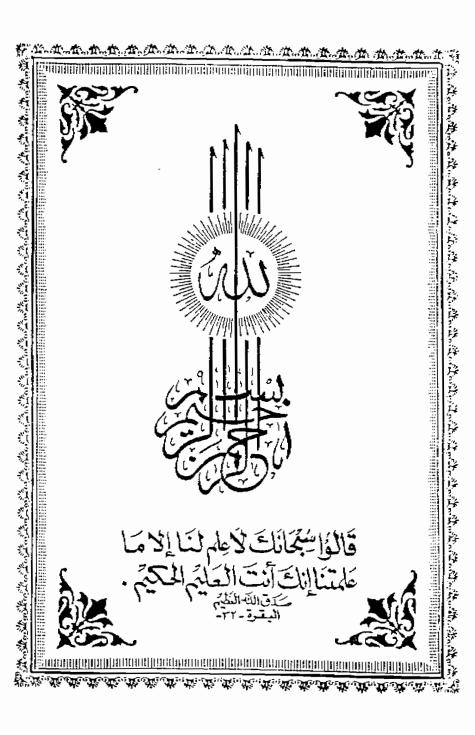
The Degree of Master of Science

621,436

in Mechanical Engineering

I D

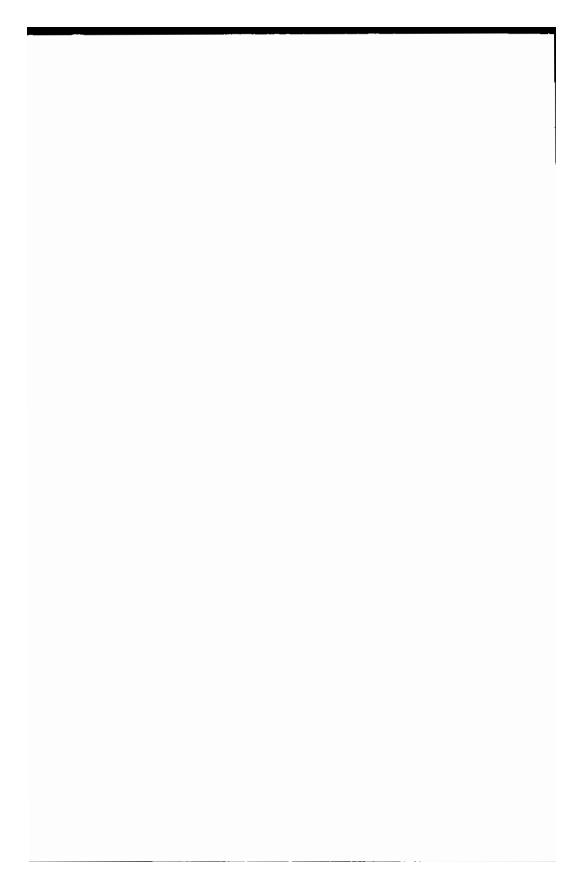
Supervised By


Prof. Dr. Adel Abdel Malek Al-Ehwany Dr. Abdul Aziz Morgan

Assoc. Prof. Dr. Gaafer Ahmed Husien

Mechanical Power Engineering Ain Shams University

(Cairo - 1995)



Examiners committee

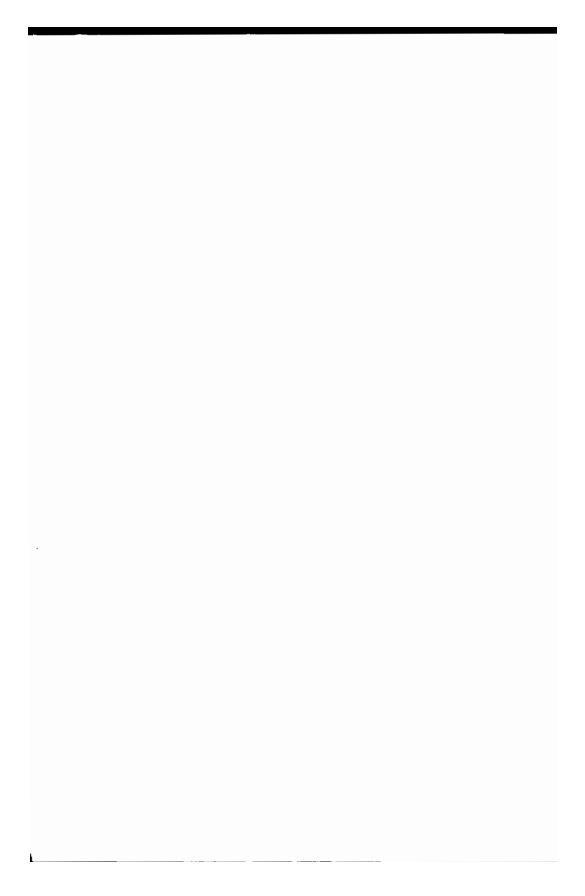
The undersigned certify that they have read and recommend to the Faculty of Engineering, Ain Shams University for acceptance a thesis entitled " A Study Of The Effect Of Exhaust Gas Recirculation On The Performance And Combustion Of Diesel Engines ", submitted by Ibrahim El-Dsoky Taha Elkeiy, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering.

Signature

- Prof. Dr. Adel Abdel Malek Al-Ehwany
 Professor of Mechanical Engineering.
 Faculty of Engineering, Ain Shams University.
- 2- Prof. Dr. Motasem Shahin professor of Mechanical Engineering. Military Technical College - Cairo
- 3- Prof. Dr. Yehya El-Banhawy
 Professor of Mechanical Engineering.
 Faculty of Engineering, Ain Shams University.
- 4- Ass. Prof. Dr. Abdul Aziz Morgan A. M. Abdul Aziz
 Assistant Professor of Mechanical Engineering.
 Faculty of Engineering, Ain Shams University.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Mechanical Engineering.


The work included in this thesis was carried out by the author in the Department of Energy and Automotive, Ain Shams University, from (27/12/1991) to (15/11/1995).

No part of the thesis has been submitted for a degree qualification at any other university or institution.

Date:

Signature:

Name: Ibrahim El-Dsoky Taha Elkeiy

بنام الراقي التي In the Name of God Most Merciful Most Compassionate

ACKNOWLEDGEMENT

My sincere gratitude to Prof. Adel Abdel Malek Al-Ehwany Assoc. Prof. Dr. Gaafar Ahmed Husinen and Dr. Abdul Aziz Morgan for their thoughful supervision and guidance through this work. I also wish to acknowledge the great dept. which I owe to col. Mohamed Abdul Ghany for his invaluable assistance. Thanks to the chief and staff of the chair of Mechanical power and Energy of Military Technical College, Cairo for their help.

I present this work to my mother and my wife, whose understanding, encouragment and sacrific could never be paid back.

Abstract

Ibrahim El-Dsoky Taha El-Keiy. A study of the effect of exhaust gas recirculation on the performance and combustion of Diesel engines. Degree of Master of Science. Ain Shams University / Faculty of Engineering, Department of Mechanical Power Engineering, 1995.

Experimental work has been carried out to investigate the effect of varying exhaust gas recirculation (EGR) on the performance and combustion developments of four stroke, six cylinder, Diesel engine. Special arrangements were constructed and then used in the experimental testes by which the EGR percentage could be controlled. During each test, measurement of engine air mass flow rate, EGR mass flow rate, fuel mass flow rate, speed, power and exhaust gas temperature were taken. Also the time of the delay period was computed from the knowledge of the cylinder pressure at specified crank angle positions and using Krigar - Borman method for calculation of Apparent Fuel Burning Rate (AFBR).

Due to the practical need of the interface between computer simulation model of apparent fuel burning rate and the pressure measurements, a data acquisition system has been used to record and analyze the test results at specific EGR percentages (0, 5, 15, 25, 40%), within reasonable range of engine running conditions.

Experimental results confirmed that EGR percentage has a great influence on the delay period, maximum pressure inside the cylinder, specific fuel consumption and engine power. At low EGR percentage up to 10% the delay period decreases for all engine speeds specially at part load. However at high EGR percentage over 20%. The delay period increases. The peak cycle pressure gradually declines as EGR percentage increases up to 20%, then it drops sharply as EGR becomes over 20%. The specific fuel consumption decreases by 3% at most as EGR percentage increases up to 5%. Meanwhile it has no effect on the engine power. As EGR percentage increases from 5% up to 15% the engine

power slightly decreases without any remarkable change in the specific fuel consumption. The engine power and specific fuel consumption deteriorate as EGR percentage increases more than 25%.

Therefore an improvement in the specific fuel consumption as much as 3% is achieved corresponding to 5% EGR percentage. The recommended range of the EGR is from 5 to 15%. The use of EGR more than 25% adversely affect engine power and specific fuel consumption.

Contents

	<u>ruge</u>	
Statment	I	
Acknowledgement		
Abstract	Ш	
Contents	V	
Nomenclature	VII	
List of Tables and Figures	IX	
Chapter (1): Introduction	1	
Chapter (2): Literature Review	2	
Chapter (3): Experimental Setup.	5	
3.1. Introduction	5	
3.2. The Test Bed	5	
3.2.1. The Engine Specification	5	
3.2.2. Brake Load	8	
3.3. Instrumentation	8	
3.3.1. Engine Speed Measurement	12	
3.3.2. Brake Power Measurement	12	
3.3.3. Pressure Measurement	15	
3.3.4. Mass Flow Rate Measurement	17	
3.3.5. Cylinder pressure virsus crank angel degree	22	
3.3.6. Temperature Measurement	26	
3.4. Data Acquisition System	29	
3.4.1. General	29	
3.4.2. The computer	29	
3.4.3. The on-line Data Acquisition System	29	
3.4.4. The off-line Data Acquisition System	3	
3.5. Calibration of the measuring instruments.	3	
3.5.1. Calibration of OrificeMeter	31	

	<u>Page</u>
3.5.2. Piezoelectric Transducers	33
3.5.3. Tachometer Calibration	33
3.5.4. Dynamometer Position Potentiometer Calibration	n 33
3.5.5. Calibration of Thermocouples	36
•	
Chapter (4): Experimental Results & Discussion	38
4.1. Introduction	38
4.2. Effect of EGR on The Delay period	38
4.2.1. Effect of EGR on the delay period with different	39
Loads and Speeds.	
4.3. Effect of EGR on the specific fuel consumption (SFC)	44
4.3.1. Effect of EGR on SFCat certain load.	44
4.3.2 Effect of EGR on SFC at constant engine speed	45
and different loads.	
4.3.3. Effect of EGR on SFC at constant load and	45
different speeds.	
4.4. Effect of EGR on the exhaust gas temperature (tex)	46
4.4.1. Effect of EGR on Exhaust gas temperature at	46
constant speed.	
4.4.2. Effect of EGR on Exhaust gas temperature at	46
constant load and different speeds.	
4.5. Effect of EGR on the maximum pressure inside the	46
cylinder.	
4.5.1. Effect of EGR on maximum pressure inside	46
cylinder at constant speeds.	
4.5.2 Effect of EGR on maximum pressure at constant	47
load and variable speeds.	
4.6. Effect of EGR on the Engine power.	47

VII

<u>Page</u>	
Chapter (5): Conclusions& Recommendations	67
References	68
Appendix A: Engine Technical Data.	72
Appendix B: Sample of calculated apparent fuel burning rate and	73
assessment of the delay period.	
Appendix C: Method of Deterimination of the Delay period.	86
Arabic Summary	-