

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار % ١٠-١٠ منوية ورطوبة نسبية من ٢٠-١٠ منوية ورطوبة نسبية من ٢٠-١٠ ثي To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائــــق الاصليــة تالفــة

بالرسالة صفحات لم ترد بالاصل

Mansoura University
Faculty of Engineering
Structural Engineering Dept.

Experimental and Theoretical Study of the Composite Rolled and Corresponding Castellated Steel Beams Under Torsion

Ву

Sabry Mohammed Mohammed Shtifa B.Sc. Civil Eng., Mansoura University, 1992 Assistant Researcher, Structural Eng. Dept.

A Thesis
Submitted in partial fulfillment for the requirements
of the degree of Master of Science

In Structural Engineering

Mansoura University
Faculty of Engineering
Structural Engineering Dept.

Experimental and Theoretical Study of the Composite Rolled and Corresponding Castellated Steel Beams Under Torsion

Ву

Sabry Mohammed Mohammed Shtifa B.Sc. Civil Eng., Mansoura University, 1992 Assistant Researcher, Structural Eng. Dept.

A Thesis

Submitted in partial fulfillment for the requirements of the degree of Master of Science

In Structural Engineering

SUPERVISORS

Professor Dr. Nabil Said Mahmoud
Professor of Steel Structures
Faculty of Engineering
Mansoura University

Asso. Prof. Dr. Saad Eldeen M. Abd-Rabou

Assistant Prof. of Structural Engineering

Faculty of Engineering

Mansoura University

<u>Supervisors</u>

Thesis title: "Experimental and Theoretical Study of Composite Rolled and Corresponding Castellated Steel Beams Under Torsion"

Researcher Name: Sabry Mohammed Mohammed Shtifa.

Date of birth: 25-1-1969

Degrees: B.Sc. in civil engineering, May 1992, with general grade

excellent.

Place of Presentation: Mansoura University

SUPERVISORS:

	Name	Position	Signature
ŀ	Professor Dr. Nabil Said Mahmoud.	Professor of Steel Structures Mansoura University.	76
2	Asso. Prof. Dr. Sand Eldeen Mostafa	Associate Professor Structural Eng. Dept. Mansoura University.	Cruba_

ACKNOWLEDGEMENTS

This work is the result of a research carried out in the Faculty of Engineering, Mansoura University, Egypt. Under the supervision of Professor Nabil Said Mahmoud and associate Professor Saad Eldeen Mostafa. The author would like to thank all those who have contributed to this experience. The author feels much honored to express his deep gratitude to Dr. Fikry abdou Salem. He would like to express his sincere thanks to Dr. Mohammed El zoghiby. Moreover. He would like to express his deep gratitude to all his colleagues in the Structural Engineering Department. Great thanks are also go to all the staff of the steel laboratory for their help during the execution of the experimental work. Finally, he would like to express his deepest thanks and gratitude to his wife who gave him hand in achieving this research successfully.

TABLE OF CONTENTS

	Page
ABSTRACT	i
NOTATIONS	ü
CHAPTER (1) Introduction	
1-1 Overview	1
1-2 Objectives	1
1-3 Thesis Arrangement	2
CHAPTER (2) Review of the Pervious Work	
2-1 Introduction	4
2-2 Types of Composite Beams in Steel Structures	4
2-3 Types of Shear Connectors in Composite Structures	5
2-4 Analysis of Composite Beams under Torsion	5
2-4-1 Section Properties	5
2-4-2 Torsional Properties	6
2-4-2-1 Exact Method	7
2-4-2-2 Approximate Method	8
2-4-2-3 Strength of Material Approach	9
2-5 Stresses	10
2-5-1 Normal Stresses	10
2-5-2 Torsional stresses	10
CHAPTER (3) Torsional Analysis of Composite Castellated Steel Beams	
3-1 Introduction	12
3-2 Derivation of Properties of Composite Castellated Steel Beams	12
3-2-1 Longitudinal sectional Properties	12
3-2-2 Torsional Properties	15
3-2-2-1 Exact Method	15
3-2-2-2 Approximate Method	16
3-2-2-3 Strength-of-Material Approach	16
3-3 Comparison between the Composite Rolled and the Corresponding	
Composite Castellated Steel Reams	17

CHAPTER (4) Computer Analysis of Composite Rolled and Castellated Bear	ns.	
4-1 Introduction	21	
4-2 Finite Element Model for a Composite Beam	21	
4-2-1 Building the Geometry of the Model	21	
4-2-2 Elements and their Attributes	23	
4-2-3 Meshing in Program	24	
4-2-4 Applying Loads and Boundary Conditions	25	
4-2-5 Analysis Option	26	
4-3 Representation of the Composite Action in the Computer Program	26	
4-3-1 Structural Nonlinearities	27	
4-3-1-1 Geometry Nonlinearities	27	
4-3-1-2 Material Nonlinearities	28	
4-3-1-3 Contact Nonlinearities	29	
4-4 Computer Modelling Verification	30	
4-5 Nonlinear analysis of Composite Beams	31	
4-5-1 Theoretical Results of Composite Beams	33	
CHAPTER (5) Experimental Program		
5-1 Introduction	48	
5-2 Experimental Program	48	
5-2-1 Test Setup	48	
5-2-2 Processing of the Experimental Work	51	
5-3 Main Frame	52	
5-4 Types of Supports used in Experimental Work	52	
5-5 Experimental Procedure	52	
5-6 Experimental Results	56	
CHAPTER (6) Discussion and Analysis of Experimental and Theoretical Results		
6-1 Introduction	62	
6-2 Discussion of the Theoretical Results	62	
6-3 Discussion of the Experimental Results	71	
6-3 Comparison between Experimental and Theoretical Results	77	
CHAPTER (7) Conclusions and Recommendations.		
7-1 Summary	84	

ı

7-2 Conclusions	84
7-2-1 Conclusions Derived from the Experimental Work	84
7-2-2 Conclusions Derived from the Theoretical Studies	85
7-2-3 Conclusions Concerning the Comparison between Theoretical and	
Experimental Studies	85
7-3 Recommendations For Future Work	86
APPENDICES	87
REFERENCES	96

ABSTRACT

In this research, experimental tests and theoretical analyses have been carried out to investigate the behavior of composite rolled and castellated steel beams under torsion. The experimental program has been executed in the Heavy Structures Laboratory, Faculty of Engineering, Mansoura University. In this program, six composite rolled and castellated steel beams have been tested to failure. The studied parameters in the experimental work are: (i) Types of the torsional supports (torsional restraint support, torsional restraint support with free concrete slab and torsional restraint support with free concrete slab as well as free upper steel flange), (ii) Load eccentricity and (iii) Steel beam sections (rolled or castellated). The research also, includes a theoretical analysis for the tested composite beams using a three-dimensional nonlinear finite element analysis as well as exact and approximate methods. Moreover, a torsional analysis for the composite castellated beams is derived taking into consideration the web castellation and composite action. Finally, comparison between the nonlinear analysis and the experimental results for the tested composite beams is presented with respect to the stress distribution in the three directions X, Y & Z, angles of twist at mid-span, torsional failure strength and deflections. From these comparisons, There appeared a good agreement between the theoretical and experimental results for the composite beams under torsion.

NOTATIONS

The following symbols and abbreviations are used in the thesis

- \overline{EA} = summation over the cross sectional area times modulus of elasticity;
- B = modular centroid of the composite section.
- a = distance from center line of bottom flange to point B;
- b = distance from point B to center line of concrete slab;
- b, = width of steel flange,
- b_e = width of concrete slab;
- c = distance between center line of concrete slab and equivalent plate;
- S = shear center:
- d = distance from shear center S to center line of bottom flange;
- t_i, t_j, t_c = thickness: thickness of web, steel flange, and concrete slab, respectively.
- $d_1 = \text{slab width};$
- $\bullet \qquad H = h + 2t_f;$
- $d_z = H + t_c / 2 t_f / 2$;
- d_i= width of bottom steel beam flange;
- S_{wc} = warping statical moment;
- $\xi = 2E_s t_f b_s^2 E_c t_c b_c^3$;
- $\bullet \qquad \omega = (a b + c);$
- $w = 2b_0^3b + b_0^3c 3b_0^2b_0c$;
- $\Delta = (a+b-c-d)^2/4;$
- $\lambda = b_c c b_c (\alpha + b d)$;
- $\hat{o} = -\sinh(L/2\kappa)/\sinh(L/\kappa)$;
- O $z \sinh(zL/\kappa) \sinh(z/\kappa)/\tanh(L/\kappa)$;
- $O_1 = \sinh(zL/\kappa)\cosh(z/\kappa)$;
- A_s = cross-sectional area of steel beam,
- A_s = cross-sectional area of slab only;

- E = modulus of elasticity,
- E_{eq} = equivalent modulus of elasticity;
- G = shear modulus;
- G_s, G_s = shear modulus of concrete slab and steel flange, respectively;
- h = web depth;
- I_w = warping constant;
- I_{BCX}, I_{RCY} = warping moment of inertia about x, y axes, respectively;
- I_v, I_v, I = moment of inertia about y axis of concrete slab, steel flange, and
 equivalent plate, respectively;
- GK_T = torsional rigidity;
- κ ÷ torsional constant:
- i, j = subscripts denoting location of plate;
- L, L_q = length of span and plate, respectively;
- M = applied bending moment;
- M_i = applied twisting moment;
- M_z^{*}, M_z^{sr} = portion of twisting moment resisted by warping shear stresses and saint- Venant shearing stresses, respectively,
- n = ratio of modulus of elasticity of steel to that of concrete;
- x, y, z =Cartesian coordinate system;
- σ = longitudinal normal stress;
- σ_{bo}, σ_{bfi}, σ_{hfi} = longitudinal normal stress at concrete slab, upper steel flange and lower steel flange, respectively;
- τ_{bc}, τ_{ba}, τ_{ba}, τ_{ba} = normal shear stress at concrete slab, upper steel flange, web,
 and lower steel flange;
- τ_{tc}τ_{tf}, τ_{tw} = pure torsional shearing stress at concrete slab, steel flange and the web, respectively;
- τ_{wu}, τ_{wfu}, τ_{wfl} = warping shear stress at concrete slab, upper steel flange and lower steel flange, respectively;