

PREPARATION AND STUDY OF SCHIFF BASE COMPLEXES WITH SOME TRANSITION METALS

A thesis Submitted By

Hanan Farouk Abd El-Halim

B.Sc., Ed.

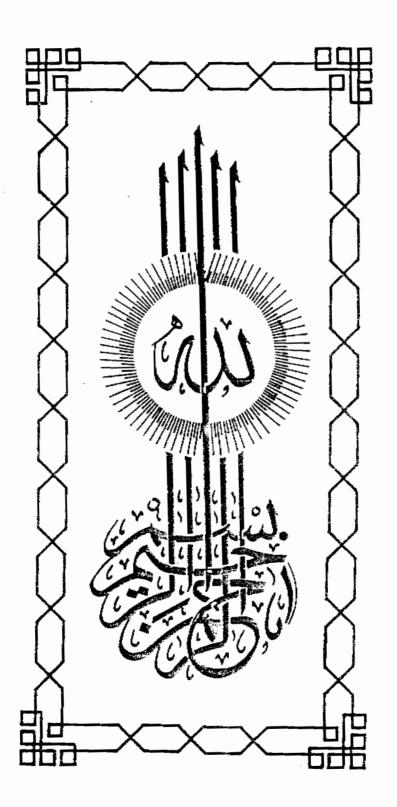
For

THE MASTER DEGREE
FOR TEACHER'S PREPARATION

IN SCIENCE

(Inorganic Chemistry)

CHEMISTRY DEPARTMENT FACULTY OF EDUCATION AIN SHAMS UNIVERSITY


> CAIRO (1994)

6.872

Preparation and study of Schiff base complexes with some transition metals

Thesis Advisors

Approved

Prof . Dr. Kamal A.R. Salib

Kamal A R Salib

Dr. Mostafa El-Behairy

El-Behairy

Dr. Shaker L. Stefan

Head of Chemistry Department

Prof . Dr. M. Samir. Abdel-Moez

ACKNOWLEDGMENT

It is a great pleasure for me to express my sincere appreciation and heart felt gratitude to Prof. Dr. Kamal A.R. Salib for his supervision, valuable advice and continuous encouragement through the whole course of this work. I also would like to thank him for his contribution and great efforts in preparing this thesis.

Thanks are extended to Associate Prof. Dr. Mostafa El-Behairy for his continuous encouragement and his efforts through this work.

Sincere and heart felt gratitude is due to Associate Prof. Dr. Shaker L. Stefan for his help and valuable advice.

I am very grateful and thankful to Prof. Dr. Samir Abdel-Moez, the Head of the Chemistry Department, and to all my Professors in the teaching staff of this Department for their continual support and encouragement.

Last but not least thanks to all who helped me in this work, especially Dr. Saied M.E. Khalil, Lecturer of Inorganic Chemistry, Department of Chemistry, especially in the experimental part of this work, and Dr. Nagwa H. Esmail, Lecturer of Inorganic Chemistry, University College for Girls, Ain-Shams University, for her help, and finally, Dr. Adel A.A. Emara, Lecturer of Inorganic Chemistry, Department of Chemistry, for making this thesis possible in the present form.

Tel.: 32-52-75

Polish Journal of Chemistry

ul. Kasprzaka 44/52, 04-224 Warsaw, Poland

Telex: 817097

Dr. Shaker L. Skfar	larsaw 1994 OS 31.
Department of Chemistry	
	uis University.
Roby Cairo Egypt. I am very glad to inform you th	J. Control of
I am very glad to inform you th	nat your paper entitled
Chelatino Agent for Some	Transcrion
is recommended for nublication. The	
in9/94	
cese, sent us over	Prof. or B. Baranowski (Editor-in-chief)
a discette with	(1803-00) = 111401(163)
ar paper (as soon as p	ossilele

EKYPL

De Shaker L. Stefan

Roxy, Cairo

Ain Shams University

Polish Journal of Chemistry ol. M. Hasprzaka 44/52 Proless Warnaka Wa. Polond

Fax: (48) 3912 0238 (22) 325276

TABLE OF CONTENTS

	Title	age
CHAP	TER 1: INTRODUCTION	
ı.	IMPORTANCE OF TRANSITION METAL	
	COMPLEXES OF SCHIFF BASE LIGANDS	. 1
II.	PREPARATION AND IMPORTANCE OF HALF-UNIT	
	SCHIFF BASE LIGANDS	. 2
III.	LITERATURE SURVEY ON DIFFERENT TYPES OF	
	SCHIFF BASE LIGANDS AND THEIR METAL	
	COMPLEXES	. 3
	(A) Bidentate Schiff Base Ligands	. 3
	(B) Tridentate Schiff Base Ligands	. 5
	(C) Tetradentate Schiff Base Ligands	. 6
	(D) Pentadentate Schiff Base Ligands	10
	(E) Hexadentate Schiff Base Ligands	13
	(F) Heptadentate Schiff Base Ligands	17
IV.	Enterature survey on Oxamides and their	
	Metallic Complexes	19
v.	OBJECT OF THE PRESENT WORK	23
CHAP.	TER 2: CHEMICALS AND EXPERIMENTAL PROCEDURES	-
Ι.	CHEMICALS	24
II.	EXPERIMENTAL PROCEDURES	24
	(A) PREPARATION OF THE LIGAND AND ITS	
	METAL COMPLEXES	24
	 Preparation of the Ligand	24

Title	Page
(i)	Preparation of o-Aceto-
	acetylphenol 24
(ii)	Preparation of The Half-
	Unit Schiff Base Ligand 25
Ciii	Preparation of The Oxamido
	Ligand, H _{gL} 26
2. Preparati	on of Metal Complexes 27
(1)	Preparation of The Mono-
	nuclear Cu ²⁺ Complex,
	Na ₁ [(H ₃ ,L)Cu].2½H ₂ O 27
(11)	Preparation of Homo-
	dinuclear Metal Complexes,
	[(H ₂ L)M ₂].nS 28
(111)	Preparation of The Hetero-
	dinuclear Cu ^{2,} -Ni ^{2,} Complex,
	[(H ₂ L)CoNi].4H ₂ D 29
(10)	Preparation of Polynuclear
	Metal Complexes 29
	(a) Preparation of
	[(H ₄ L)Fe ₄ Cl _{[0} (OH ₂)*]
	Complex 29
	(b) Preparation of
	[LCaMX _n] Complexes 29
	(c) Preparation of
	[LM ₂ M′ X _n] Complexes 30

		Title	2	Pa	ige
(B)		CHEM	ICAL ANALYSES	•	31
		1.	Determination of Transition Metal		
			Cations in The Mononuclear Cu ²⁺		
			Complex and Homo-, Di- or Poly-		
			Nuclear Complexes		31
	•		(a) Determination of Copper(II)		31
			(b) Determination of Nickel(II)		32
			(c) Determination of Iron(III)		32
		2.	Determination of Chlorine		33
		з.	Microanalyses of Carbon, Hydrogen		
			and Nitrogen		33
	(C)	PHYS	ICAL MEASUREMENTS		33
		1.	IR Spectra		33
		2.	Electronic Spectra		33
		3.	H-NMR Spectra		34
		4.	Magnetic Measurements		34
		5.	Mass Spectra		34
CHAP"	TER 3	:	RESULTS AND DISCUSSION		
I.	THE	DXAMI	DO LIGAND AND ITS METAL COMPLEXES		36
	(A)	THE	OXAMIDO LIGAND		36
	(B)	MONO	NUCLEAR COPPER(II) COMPLEX		41
	(0)	DINU	CLEAR AND TETRANUCLEAR METAL		
		COMP	LEXES		45

		Title	•	Page
		1.	IR Spectra	. 45
		2.	Electronic spectra and Magnetic	
			Moments	. 48
II.	MONO	NUCLE	AR COPPER(II) OXAMIDO COMPLEX AS	
	A CH	ELATI	NG AGENT	. 52
	(A)	номо	- AND HETERO-DINUCLEAR COMPLEXES	. 53
	(B)	HETER	-(TRI- AND TETRA POLY-NUCLEAR)	
		COMP	EXES	. 54
	(C)	PHYS	ICAL MEASUREMENTS	. 57
		1.	IR Spectra	. 57
		2.	Electronic Spectra and Magnetic	
			Moments	. 58
		з.	Mass Spectrum of The Fe(III)-	
			Cu(II) Complex	. 61
III.	номо	DINUC	LEAR Cu(II) DXAMIDO COMPLEX AS A	
	CHEL	AT I NG	AGENT	. 68
	(A)	HOMO	TETRANUCLEAR AND HETERO-(TRI-,	
		TETR	A- AND POLY-NUCLEAR) COMPLEXES	. 68
	(B)	PHYS	ICAL MEASUREMENTS	. 75
		1.	IR Spectra	. 75
		2.	Electronic Spectra and Magnetic	
•			Moments	. 76
		з.	Mass Spectrum of the Cu(II)-Mn(II)	

Title Pa	9e
Complex, Structure LXII	78
IV. DINUCLEAR NICKEL(II) OXAMIDO COMPLEX	
AS A CHELATING AGENT	84
(A) HOMOTETRANUCLEAR AND HETERO-(TETRA- AND	
POLY-NUCLEAR) COMPLEXES	84
(B) PHYSICAL MEASUREMENTS	88
1. IR Spectra	88
2. Electronic Spectra and Magnetic	
Moments	89
 Mass spectrum of the Fe(III)-Ni(II) 	
Complex	92
REFERENCES	96
SUMMARY1	04
Arabic Summary	

CHAPTER 1 INTRODUCTION

I. IMPORTANCE OF TRANSITION METAL COMPLEXES OF SCHIFF BASE LIGANDS

Transition metals occur in metalloenzymes [1-7] bound to a macrocycle such as heme ring or to donor atoms of peptide chains usually in a distorted environment, as in hemerythin (Fe₂) [4,5] or hemocynin (Cu₂) [6,7].

Schiff base complexes have received considerable attention as biomimic model compounds [3,8-11]. Complexes of cobalt(II) involving derivatives of salicylaldehyde and aliphatic amines are similar to bilogical dioxygen carriers [11-19], as well as their potential as catalysts for the insertion of exygen into organic substrates [20-22].

In particular, the dioxygen adduct of N,N'-ethylenebis(salicylideneiminato)cobalt(II), $\{Co(Salen)\}_1$, of formula $\{Co(Salen)(D_2)L\}$ and $\{(Co(Salen)L)_2(D_2)\}$ $\{L=pyridine,N,N-dimethylformamide (DMF)\}$ or dimethylsulphoxide (DMSO)) have received intensive investigation and have been recently reviewed $\{3,23,24\}$. $\{Fe(Salen)\}$ has become attractive as the model compound of natural iron protein, hemerythin, which binds molecular oxygen reversibly $\{25\}$. $\{Cu(Salen)\}$ is also a potential model compound of hemocyanin. $\{N,N-b\}$ $\{Co(acacen)\}$, has also been reported diaminatocobalt(II), $\{Co(acacen)\}$, has also been reported

to bind molecular oxygen reversibly in N,N-dimethylformamide [8.26].

Schiff base complexes incorporating two similar or different metal ions are also of special interest. They are similar to those found in the living organisms, e.g., enzymes and proteins which develop their activity in the presence of two or more metal ions [27-29]. These complexes are also useful in catalysis [30].

II. PREPARATION AND IMPORTANCE OF HALF-UNIT SCHIFF BASE LIGANDS

The condensation of diamines with ketonic compounds usually occur, in the molar ratio 1:2, to yield symmetrical Schiff base ligand such as academ and salem.

Recently, chemists succeeded in preparing half-unit Schiff base compounds by reacting diamines with ketonic compounds, in the molar ratio 1:1, under specific conditions, e.g., using very dilute solutions, very slow addition of the diamine to the ketonic compound, continuous stirring during addition and thereafter for 18 hrs and finally separating the half-unit from the solvent under vacuum at relatively moderate temperature. Examples of the half-unit compounds are shown by Structure I [31] and Structure II [32].

OH O HN
H₂N

I

I I

Tridentate half-unit

Tetradentate half-unit

ligand

ligand

These half-unit compounds enabled the preparation of unsymmetrical Schiff bases by further condensing them with aldehydes and ketones.

III. LITERATURE SURVEY ON DIFFERENT TYPES OF SCHIFF BASE LIGANDS AND THEIR METALLIC COMPLEXES

The following survey on the different types of Schiff bases throw the light on the recent advances in this area. The examples selected here are more or less related to the Schiff base prepared in the present study.

(A) Bidentate Schiff Base Ligands

The bidentate Schiff base ligands N-R-salicylaldimines of the type NO-sites were prepared by the reaction