PRODUCTION OF SOME MICROBIAL ENZYMES

Ву

AHMED ABDEL-WAHAB ABDEL-HAFEZ

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE

in

(Agric. Microbiology)

Department of Agricultural Microbiology

Faculty of Agriculture

Ain Shams University

1995

APPROVAL SHEET

PRODUCTION OF SOME MICROBIAL ENZYMES

Ву

AHMED ABDEL-WAHAB ABDEL-HAFEZ

B. Sc. (Agric. Microbiology)
Fac. Agric., Ain Shams Univ., 1989

This thesis for M.Sc.degree has been approved by:

Prof. Dr. E.M. Ramadan Anna Association of Agric. Microbiology, Fac. Agric.,
Ain Shams Univ.

Prof. Dr. M.M. Zaki

Prof. of Agric. Microbiology, Head of Agric.

Microbiology Dept., Fac. Agric., Ain Shams

Univ. (Supervisor).

Date of Examination: 27 / 12 / 1994

PRODUCTION OF SOME MICROBIAL ENZYMES

Ву

AHMED ABDEL-WAHAB ABDEL-HAFEZ

B.Sc. (Agric. Microbiology)
Ain Shams Univ., 1989

ABSTRACT

The factors affecting protease production by <u>B. subtilis</u> N' strain were investigated. Results of these studies denoted that modified Luria broth (Zamost et al, 1990) gave the highest enzyme production. 2.0% maltose in the medium was the best carbon source. The optimal levels of yeast extract and tryptone were 0.8 and 2.0% respectively. Enzyme secretion occurs at a wide range of pH between 4-10 with pH 8.0 as optimal. Gradual progressive modifications of the medium resulted in 8 fold increase in enzyme production reaching 303 units/ml of the culture.

The produced enzyme was purified by fractional precipitation by acetone (55% saturation), dialysis by tris phosphate buffer, and gel filtration chromatography. By this

method the specific activity was raised 3.78 fold with 43% recovery of the enzyme.

The characteristics of the purified enzyme were evaluated. The enzyme showed an optimum temperature of 40°C, and even at 80°C about 50% of the original activity was still retained. The enzyme has a considerable thermal stability and at 60°C about 90% of its activity was recorded after 2 hr exposure. CaCl₂ considerably increased the thermal stability of the enzyme. The highest enzyme activity was at 0.8 and 0.3% casein and asocasein respectively as substrates.

When enzyme immobilization was tried, it was found that the amount of enzyme retained by the carriers was higher in adsorptive binding than covalent coupling. The enzyme immobilized on trisopor showed the highest specific activity. The enzyme - CPG-10 covalent coupling system was greatly stable. Thus, even after repeated use of this immobilized system in 10 protein digesting cycles, it still retained 100% activity. Both pure commercial subtilisin and the purified enzyme obtained from this work showed similar behavior with respect to retention on carriers and specific activity of the immobilized system.

ACKNOWLEDGMENT

Most of this work was carried out in the Agric.
Microbiology Dept., Faculty of Agric., Ain Shams University.
Immobilized enzyme experiments were carried out in Prof. Dr.
R. Kleine Lab., Technische Hochschule, Köthen, Germany.

I would like to express my deep gratitude and appreciation to Prof. Dr. M.M. Zaki, Professor of Microbiology and Head of Agric. Microbiology Dept., and Prof. Dr. M.E. El-Haddad, Professor of Microbiology in the same Department for suggesting the problem, supervision, keeping interest and valuable criticism. I am also indebted to Prof. R. Kleine, Professor of Biochemistry, Dr. Technische Hochschule, Köthen, Germany for supervising the immobilized enzyme experiments and offering all required facilities in his lab for enzymology experiments. Sincere thanks to the authorities of Technische Hochschule, Köthen for giving me one year fellowship for training and doing part of this work in their labs.

Special thanks are extended to Dr. M.I. Mostafa, lecturer of Microbiology, Faculty of Agric., Ain Shams University for his sincere helps throughout this work. The help and encouragement of all members of the Agric. Microbiology Dept., Faculty of Agric., Ain Shams University are highly appreciated.

CONTENT

P.	AGE
1. INTRODUCTION	1
2. REVIEU OF LITERATURE	3
2.1. Importance and Characteristics of Proteases	3
2.2. Producing Organism	6
2.3. Factors Affecting Protease Production	9
2.4. Immobilized Enzymes	16
3. MATERIALS AND METHODS	22
3.1. Material	22
3.1.1. The Organism	22
3.1.2. Standard Enzyme	22
3.1.3 Subtrates	22
3.1.4. Carrier (support) materials	22
3.1.5. Analytical Reagents	22
3.2. Media Used	24
3.3. Methods	26
3.3.1. Determination of Factors Affecting Protease	
Production	26
3.3.1.1. Effect of production Media	26
3.3.1.2. Effect of Carbon Source	26
3.3.1.3. Effect of Sugar Concentration	27
3.3.1.4. Effect of initial pH of the Mediaum	27
3.3.1.5. Effect of Yeast Extract Level	27
3.3.1.6. Effect of Tryptone Concentration	28

	FAGE
3.3.2. Determination of Proteolytic activity in	
culure media	28
3.3.3. Enzyme Production and Recovery	29
3.3.3.1. Ammonium Sulfate Precipitation	29
3.3.3.1. Acetone Precipitation	30
3.3.4. Gell Filtration Chromatography For Enzyme	
Purification	30
3.3.5. Stabilization of Pure Enzyme	31
3.3.6. Immobilization of Subtilisin and Purified	
Enzyme	31
3.3.6.1. Adsorptive Binding Method	32
3.3.6.2. Covalent Coupling	32
3.3.6.3. Determination of the Activity of	
Immobilized Enzymes	33
3.3.6.4. Estimation of the Extent of Casein	
Digestion by Free and Immobilized	
Enzyme	34
3.3.6.5. Durability of Immobilized Enzyme	34
4. RESULTS AND DISCUSSION	36
4.1. Factor Affecting Protease Production	36
4.1.1. Effect of Production Media	36
4.1.2. Effect of Carbon Source	39
4.1.3. Effect of Maltose Concentration	42
4.1.4. Effect of pH of the Medium	42
4.1.5. Effect of Yeast Extract Concentration	47
4.1.6. Effect of Tryptone Concentration	47

P.	AGE
4.2. Recovery and Purification of Protease	5 <i>2</i>
4.2.1. Recovery of Enzyme	55
4.2.2. Gel Filtration Chromatography	58
4.3. Characteristics of Purified Enzyme	58
4.3.1. Effect of pH on Enzyme Activity	58
4.3.2. Effect of Temperature on Enzyme Activity	62
4.3.3. Thermal Stability	65
4.3.4. Thermal Stability as a Function of Time	65
4.3.5. Thermal Stability as a Function of	
Stabilitizers	70
4.3.6. Effect of Substrate Concentration on Enzyme	
Activity	70
4.4. Immobilization of Protease	74
4.4.1. Retaining Ability	74
4.4.2 Specific Activity of Immobilized Enzymes	78
4.4.3 Extent of Casein Digestion	80
4.4.4. Durability for Repeated Use	82
4.4.5. Immobilization of Produced Purfied Enzyme .	85
5. SUMMARY	88
6. REFERENCES	92
7. ARABIC SUMMARY	

LIST OF TABLES

Tab.	le Pa	ige
1.	Some properties of carriers used for subtilisin	
	immobilization	23
2.	Effect of different production media on protease	
	production by B. subtilis N' strain	37
3.	Effect of different carbon sources on protease	
	production by B. subtilis N' strain in modified	
	luria broth	40
4.	Effect of maltose levels on protease production	
	by B. subtilis N' strain	43
5.	Effect of pH levels of the medium on protease	
	production by B. subtilis N' strain	45
6.	Effect of yeast extract level in modified Luria	
	broth on protease production by B. subtilis N'	
	strain	48
7.	Effect of tryptone levels in modified luria both	
	on protease production by B. subtilis N' strain	50
8.	Precipitation of the produced protease from	
	B. subtilis N' strain by ammonium sulfate	54
9.	Precipitation of the produced protease from	
	B. subtilis N' strain with acetone	56
10.	Recovery and purification of B. subtilis N'	
	protease	59
11.	Effect of different pH levels on subtilisin	
	activity	60

Tab:	le P	age
12.	Effect of temperature on subtilisin activity	
	(at pH 8 for 30 min)	63
13.	Thermo-stability of purified subtilisin at	
	pH 8 for 30 min	66
14.	Stability of purified subtilisin after different	
	preincubation period at 50 and 60°C at pH 8	68
15.	Stabilization of purified subtilisin by some	
	additives at pH 8 and 55°C	71
16.	Effect of different casein levels on subtilisin	
	activity	72
17.	Effect of different azocasein levels on	
	subtilisin activity	75
18.	The rate of retention of subtilisin BPN' on	
	different carriers	77
19.	Hydrolysis of casein and azocasein by subtilisin	
	BPN' immobilized on different carriers	79
20.	Comparison between the extent of casein digestion	
	by free and immobilized subtilisin using different	
	carriers	81
21.	Durability for repeated use of two types of	
	immobilized subtilisin	83
22.	The rate of retention of the purified enzyme on	
	different carriers	86
23.	Specific activity of the purified enzyme	
	immobilized on different carriers	87

LIST OF FIGURES

rigi	ure	ıge
1.	Effect of different production media on protease	
	production by B. subtilis N' strain	38
2.	Effect of different carbon sources on protease	
	production by B. subtilis N' strain	41
з.	Effect of maltose level on protease production	
	by B. subtilis N' strain	44
4.	Effect of pH level of the medium on protease	
	production by B. subtilis N' strain	46
5.	Effect of yeast extract levels in modified	
	Luria broth on protease production by	
	B. subtilis N' strain	49
6.	Effect of tryptone levels in modified Luria	
	broth on protease production by B. subtilis N'	
	strain	51
7.	Sephadex G-100 gel filtration column chromatography	
	of B. subtilis protease	57
8.	Effect of pH level on subtilisin activity	61
9.	Effect of temperature on subtilisin activity at pH	
	8 for 30 min	64
10.	Thermo-stability of purified subtilisin at pH	
	8 for 30 min	67
11.	Stability of purified subtilisin with different	
	preincubation time at 50 and 60°C at pH 8	69

Figu	ure Pa	age
12.	Effect of different casein concentration on	
	subtilisin activity	73
13.	Effect of different azocasein concentration on	
	subtilisin activity	76
14.	Durability for repeated use of two types of	
	immobilized subtilisin	84

INTRODUCTION

1. INTRODUCTION

The real progress in microbial enzyme technology started after world war II. This time coincided with the discovery of numerous new enzymes, increase in knowledge of enzyme properties and progress in fermentation technology. Moreover, it had been realized that all enzymes of industrial interest can be produced by microorganisms.

Proteolytic enzymes received special interest because of their large scale production and wide range of application in industry and medicine. Some of these enzymes are produced in large quantities, up to thousands of tons. Among the industrial applications of proteases are: detergents, dairy industries, bating of leather, dehairing and dewooling of skins, removal of turbidity from beverages, dough conditioning, meat tenderization, modification of protein in food industries, reverse hydrolysis in aspertame synthesis (sweeteners preparation), etc. Proteases have also some important medical uses such as removal of dead tissues and dissolution of blood clots, treatment of certain types of hernia, conversion of hog insulin into human insulin and a digestive aid.

The use of immobilized enzymes came to application because of the high cost of enzyme preparation which may affect their economical use in wide range of industrial applications. Consequently it was important to develop systems which allow the recovery and re-use of these