HEADACHES IN CHILDREN

THESIS

SUBMITTED FOR PARTIAL FULFILMENT OF

M.S. DEGREE IN PAEDIATRICS

ВУ

6/8.920.72 H.M

HANEM MAHMOUD HASSAN ALI

M.B.B.CH.

UNDER THE SUPERVISION OF


PROFESSOR DR. SAADIA ABD EL FATTAH

PROFESSOR OF PAEDIATRICS

FACULTY OF MEDICINE

AIN SHAMS UNIVERSITY

1984

وساريان العالم الموالية

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and appreciation to my eminent Professor Dr. SAADIA ABDEL FATTAH, who selected the subject of this thesis.

It was through her enthusiastic cooperation, constant advices, support and encouragement and meticulous revision of every possible details that this work could come to existence.

I am also greatly indebted to Professor Dr.

SAWSAN EL SOKARY, for all the help, kind encouragement and advices I have received.

TOMY MOTHER

CONTENTS

		Page
	I- INTRODUCTION AND AIM OF ESSAY	- 1-2
	II- REVIEW OF LITERATURE:-	
!	1- PREVALENCE OF HEADACHES	- 3
	2- PATHOPHYSIOLOGY OF HEADACHES	- 4-9
	3- CLASSIFICATION OF HEADACHES	10-13
	III- EVALUATION OF CHILD WITH HEADACHES:-	
	A- <u>HISTORY</u>	14-19
	B- PHYSICAL EXAMINATION	20–26
	C- INVESTIGATIONS	26-30
	IV- SPECIFIC HEADACHE SYNDROMES	31-96
	V - TREATMENT OF HEADACHE	97-99
	VI- SUMMARY AND CONCLUSION	100-105
	VII- REFERENCES	106–125
	VIII- ARABIC SUMMARY	

INTRODUCTION

ALNID

ALIM OF ESSAY

INTRODUCTION

AND

AIM OF ESSAY

HEADACHE is a frequent symptom in paediatric practice.

Recurrent head pain is a common, frequently benign symptoms late in childhood. In the young child it is unusual and more often indicative of serious underlying disease.

Deciding whether a child's headache is "organic" or "functional" may be difficult for the most experienced clinician.

A thorough and systematic history and physical examination coupled with selected laboratory test will guide the physician to the correct diagnosis in most cases.

Of all the paediatric patients who have chronic headache, the cause will be organic in only 5% to 73%.

It is essential, therefore, that causes of headaches must be identified as early as possible and their management should be planned promptly.

The aim of the essay is to study headaches in children and their causes.

this may help us to know, causes, early detection and prevention of complication of diseases associated with headache and their management.

IRIEWILIEW OF LICIERATURIE

1. PREVALENCE OF HEADACHE

Data concerning the provalence of headaches in children of different populations are not readily available, since headache is neither a reportable lisonder nor does it often necessitate hospitalization.

Egermark-Eriksson, in 1982, reported on the prevalence of headache in Swedish school children in the age groups 7, 11 and 15 years answered a questionmaire concerning headache.

Recurrent headache was reported by 23% of the children, while 52% said that they had headache occasionally. Headache was more common among the older children than among the younger ones, and in the oldest age—group, headache was more common in girls than in boys.

No significant sex differences were observed in 7-years old and 11-years old children.

The prevalence of migraine in children was 2 - 1.5 %.

2. FATH PHISIOION OF HILLIGHED

Headaches are actually referred pain to the surface of the head from the deep structures. Hany headaches result from pain stimuli arising inside the cranium, but equally as many probably result from pain arising outside the cranium (Goldstein, 1980).

The transmission and modulation of pain appear to depend on discrete neural pathway

Information derived from specific peripheral pain receptors, nociceptors, is processed at STIMAL CORD, DRAIN STAIL, and THALAMOCORTICAL levels, although the ultimate cortical receiving region is not known. SERCECTER has been implicated as an inhibitory transmitter in the brain stem pain modulating system (Backburn and Fields, 1978).

The most comprehensive idea of how pain is perceived is expressed in the gate-control theory of pain (Melzock and wall, 1935).

The theory proposes that a neural network in the DORSAL HORN of the spinul cord may increase or decrease the flow of information from the PERIPHERAL PRHIMRY APPERENT TERMINALS TO CENTRAL PAIN TRANSMISSION MEUROUS.

The "GATING" mechanism, therefore, modulates somatic information before it evokes pain perception. The degree to which the gate affects SENGCRY TRANSLIBSION is determined by both peripheral and descending influences.

Neural areas responsible for pain perception are activated when the level of activity in pain transmission neurons exceeds a critical level.

The presence or absence of pain, then, is determined by a balance between the INCOMING afferent impulses and CENTRAL influences upon the GAPE. Thus a lesion (anatomic or biochemical) that impairs the normal DESCENDING or segmental INMIBITORY influences could OPEN THE GATE, resulting in pain.

Psychological factors such as attention, past experience and state of mind may also influence pain perception through the same mechanism. (Melzock, 1973).

Pain may result from activation of peripheral nociceptors in the presence of a normally functioning nervous system. Another type of pain is the result of injury to the central or peripheral nervous system, and may occur without activation of peripheral receptors. (Raskin, 1980).

Headache may have its origin in stimulation of extracranial or intracranial structures. The extracranial pain sensitive structures of the head include the scalp, extracranial arteries, mucous membranes of the masal and paranasal spaces, external and middle ear, teeth and muscles of the scalp, face and neck (Fig.1). The basic extracranial headache mechanisms are distention, pulsation and stretching of arterial walls, or the contraction of skeletal

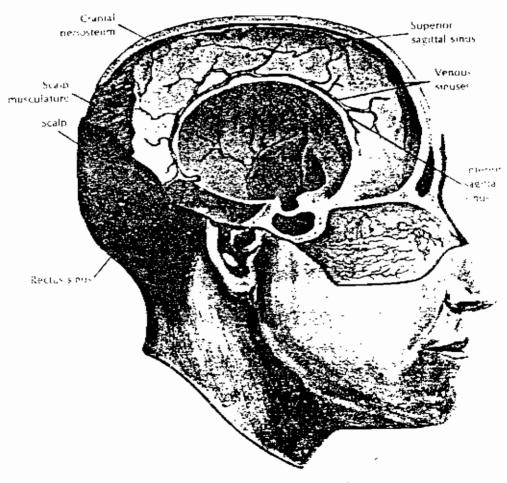


Fig. 1 - Structures sensitive to pain

muscle which stimulate peripheral receptors in these tissues, resulting in the perception of pain.

Intracranial pain-sensitive structures in the head include the intracranial venous sinuses and their tributa-ries; parts of the dura at the base of the shull; fural arteries (amterior and riddle namingual); proximal portion of the cerebral arteries leading to and coming from the circle of Willis; upper cervical nerves; fifth, minth and tenth cranicl merves. (Fig.2)

The brain parenchyma, much of the dura, arachnoil and pia matter, the ependyma of the vantriels, the choroid plexus and the cranium are insensitive to pain. The periosteum is locally sensitive to stretch.

The basic acchanisms in intracranial liseases are TRACTICH due to lirect or indirect DIDILLITATION of pain sensitive structures, DISTERICH and albort the pain-sensitive structures of the heal, DISTERICH of pain-sensitive areas due to increased intraventricular pressure cause? Ty lesions that obstruct cerebrospinal fluid flow, DIRECT PRESSURE by an intracranial mass on certain cranial and cervical nerves. One or more of the nechanisms may be operating in any given patient with head-sches. Raised intracranial pressure by itself does not cause beadache. (Fig. 3)

Headache carnot be provoked by raising the pressure