STUDIES ON GROWTH AND MILK PRODUCTION IN EGYPTIAN BUFFALOES

3Y

TAREK ABD EL-AZIZ SOLEMAN FOODA

(B. Sc. in Agriculture, Faculty of Agriculture, Ain Shams University, 1986)

A thesis submitted in partial fulfillment of

the requirements for the degree of

1: A

MASTER OF SCIENCE

in

Agriculture

(Animal Breeding)

43°91

Department of Animal Production Faculty of Agriculture

Ain Shams University

1996

APPROVAL SHEET

STUDIES ON GROWTH AND MILK PRODUCTION IN EGYPTIAN BUFFALOES

BY

TAREK ABD EL-AZIZ SOLEMAN FOODA

(B. Sc. in Agriculture, Faculty of Agriculture, Ain Shams University, 1986)

This thesis for M. Sc. Degree has been

Approved by:

Prof. Dr. Omar Yousry Abdallah Wall Laboration

Prof. of Animal Breeding, Fac. of Agric., Ain Shams Univ.

Prof. Dr. Ashraf Mohamed Soleman

Prof. of Animal Breeding, Fac. of Aric., Zagazig Univ.

Dr. Karima Abd El-Aziz Shahin

Assoc. Prof. of Animal Breeding, Fac. of Agric., Ain Shams Univ. (Supervisor)

+ Terriana A Shahin

Date of examination: 9/1/2/1995

STUDIES ON GROWTH AND MILK PRODUCTION IN EGYPTIAN BUFFALOES

BY

TAREK ABD EL-AZIZ SOLEMAN FOODA

(B. Sc. in Agriculture, Faculty of Agriculture, Ain Shams University, 1986)

Under the Supervision:

Prof. Dr. Abd el-Halim Anis Ashmawy
Prof. of Animal Breeding, Fac. of Agric., Ain
shams Univ.

Dr. Karima Abd El-Aziz Shahin
Assoc. Prof. of Animal Breeding, Fac. of Agric.,
Ain Shams Univ.

Prof. Dr. Kawthar Abd El-Mounaim Mourad Research Director, Animal Production Research Institute.

ABSTRACT

TAREK ABD EL-AZIZ SOLEMAN FOODA, STUDIES ON GROWTH AND MILK PRODUCTION IN EGYPTIAN BUFFALOES. Unpublished Master of Science in Animal Breeding, University of Ain Shams, 1995.

The data were collected at the Buffalo Experimental Stations belonging to the Animal Production Research Institute, Ministry of Agriculture, Egypt.

The animal used were 55 females and 59 males (1 to 18 months of age) and 114 mature buffalo cows.

The objective of this study was to characterize the Egyptian buffaloes in terms of live body weight and dimensions and carcass weight and compositional traits and to describe statistical relationships of practical importance to buffalo enterprises, including predictive equations of body weight and dimensions based on age or an independent body dimension, predictive equations of milk yield and % milk fat based on body weight or body dimensions, growth functions and milk ~ beef and beff ~ beef correlations.

The lactating herd used in the growth study has been described in terms of productive traits (total milk yield; 305-day milk yield; lactation period; dry period) and reproductive traits (days open; calving interval).

The most important results were as follows:

- The estimates of parameters of the Brody's function describing the weight-age relationship in females were as follows: Asymptotic weight (A)= 772 kg; Maturing rate (K)= 0.021 kg; Integration constant (B)= 788 kg.
- The Hyxley's function describing the development of body dimensions of growing animals related to body weight gave the following ascending gradient of maturity: height at hips, height at withers, body length, shank circumference, width at shoulder, herat circumference, body depth, width at hips, flank circumference and abdominal circumference.
- The simple linear regression equations showed the possibility of relying on heart circumference or abdominal circumference singly to predict body weight with a maximum error of 20 kg.

- A considerable error was involved in predicting milk yield and % milk fat using body weight or body dimensions.
- The Huxley's function describing the development of carcass weight and the offals relative to empty body weight gave the following ascending gradient of maturity: weight of vesceral offals, hot carcass and non-vesceral offals, whereas relative to carcass weight gave the following gradient: percentage of muscle: bone, weight of total bone in carcass and total muscle in carcass.
- Phenotypic correlation coefficients indicated that the weight and area measurements of individual muscles were more associated with the total side muscle weight than with the length or width measurements.
- Phenotypic correlation coefficients indicated that the live body weight and dimensions were negatively correlated with dressing percentage, fat percentage and bone percentage, but positively correlated with muscle percentage. Flank circumference had the highest correlation with muscle % whereas body length had the lowest correlation.

KEY WORDS: Buffalo, live body weight and dimensions, carcass attributes, growth functions, predictive equations, Milk-beef and beef - beef correlations.

ACKNOWLEDGMENTS

First and foremost, I would like to thank God for having helped me to accomplish this work.

I wish to express my gratitude to Dr. Abd El Halim A. Ashmawy, Professor of Animal Breeding, Ain Shams University for the advice and interest he has given.

I am indebted to Dr. Karima A. Shahin, Associate Professor of Animal Breeding, Ain Shams University, for her helpful advice, constructive suggestions and encouragement. Without her valuable guidance this work would not have been done.

Sincere thanks are offered to Research Director Dr. Kawthar A. Mourad, Animal Production Research Institute, Ministry of Agriculture, for providing facilities and support throughout the work.

The invaluable support of many of my colleagues specially: Hoda M. Abd El-Raoof, Ehab Abd El-Aziz G., Hassan B. Mohamed deserve special mention.

I acknowledge the help of the staff of El-Nattafe El-Gidid and El-Nattafe El-Kadim Stations at Mahalet Mousa (Kafr El-Sheikh Governorate).

Finally I would like to express my deepest thanks to my mother, brothers and sister, for their support.

CONTENTS

	PAGE
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	2
i. Live Performance	2
1. Productive and reproductive traits	2
1.1. Means	2
1.1.1. Productive traits	2
1.1.2. Reproductive traits	2
1.2. Addetive genetic variation	2
1.2.1. Productive traits	2
1.2.2. Reproductive traits	6
1.3. Non - genetic factors of variation	6
1.3.1. Parity	. 6
1.3.1.1. Effects on productive traits	6
1.3.1.2. Effects on reproductive traits	10
1.3.2. Season of calving	. 10
1.3.2.1. Effects on productive traits	. 10
1.3.2.2. Effects on reproductive traits	. 10
1.3.3. Year of calving	. 10
1.3.3.1. Effects on productive traits	10
1.3.3.2. Effects on reproductive traits	. 11
1.4. Lactation curve	. 11
2. Body dimensions	11
2.1. Means	11
2.2. Additive genetic variation	. 11
2.3. Other factors of variation	. 15
3. Body weight	15
3.1. Means	15
3.2. Additive genetic variation	15

	PAGE
3.3. Other factors of variation	. 15
3.4. Average daily gain	15
4. Relationship: body measurements-milk production	22
5. Relationship: body dimensions-body weight	22
6- Predictive equations of body weight using body	
dimensions	22
ii. Slaughter performance	22
1. Means	22
1.1 External offals	22
1.2. Internal offals	26
1.3. Dressing percentage	26
1.4. Carcass composition traits	26
2. Growth patterns	26
iii. Relationship: live performance - slaughter performance.	26
III. MATERIALS AND METHODS	33
i. Live performance	33
1. Characterization of productive and reproductive	
traits of the buffalo cows used in the growth stud	y. 33
1.1. Animals and management	33
1.2. Traits considered	33
1.3. Statistical analysis	33
2. Body weight and body dimensions	35
2.1. Animals and management	35
2.2. Traits considered	35
2.3. Statistical analysis	37
3. Relationship: body measurements-milk production	. 38
3.1. Animals and management	38
3.2. Traits considered	38
3.3. Statistical analysis	38
ii. Slaughter performance	39
1. Slaughter and carcass dissection traits	39

PA	GE
1.1. Animals and management	39
1.2. Traits considered	39
1.3. Statistical analysis	39
iii. Relationship: live performance-slaughter performance	40
1. Relationship: body measurements - slaughter and carcass	
traits	40
1.1. Animals and management	40
1.2. Traits considered	40
1.3. Statistical analysis	40
IV. RESULTS AND DISCUSSION	41
i. Live performance	41
1. Characterization of productive and reproductive traits	
of the buffalo cows used in the growth study	41
2. Body dimensions and body weight	51
2.1. Means and phenotypic variabilities	51
2.2. Additive genetic variation	51
2.3. Non-genetic factors of variation	51
2.4. Growth patterns	60
2.4.1. Measure - age growth patterns	60
2.4.2. Measure - measure growth patterns	60
2.5. Relationship among body measurements	60
2.6. Predictive equations of body weight using body	
dimensions	69
3. Relationship: body measurements-milk production	
traits	69
3.1. Phenotypic correlations	69
3.2. Predective equations of milk production	
using body measurements	78
ii. Slaughter performance	78
iii. Relationship: live performance-slaughter performance	93
1. Relationship: body measurements - principal	

	PAGE
slaughter traits	. 93
V. SUMMARY AND CONCLUSION	. 96
VI. REFERENCES	102
APPENDICES	
ARABIC SUMMARY	