AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

AN INVESTIGATION OF PERFORMANCE AND POLLUTION FOR SPARK IGNITION ENGINES USING GASOLINE - ALCOHOL BLENDS AS A FUEL

By
Eng. EL-TANTAWY MOHAMED FARID EL-TANTAWY

Thesis

Submitted in Partial Fulfilment of the Requirements for the Degree of

Master of Science

in

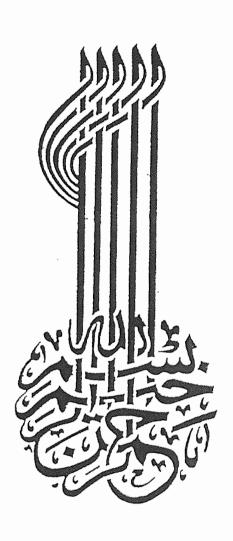
Mechanical Engineering

かラ

UNDER THE SUPERVISION OF

Prof. Adel A. El Ehwany
Head of Mech. Power Eng. Dept.
Prof. of Heat Engines
Faculty of Engineering

Ain Shams University


63605

المسيحة الله علية الملهمية و المسيحة الملهمية و المسيحة الله و المسيحة و المسيحة و المسيحة و المسيحة و المسيحة

Dr. Mahmoud Abd El Rasheed Noseir Ass. prof. of Heat Engines Faculty of Engineering Ain Shams University Dr. Gaafar Ahmed Hussien Ass. prof. of Heat Engines Military Technical College

Cairo 1995

وَرَ بِلَ الْمُعْلِ الْوَالْمُنْ الْمُعْلِكُمْ وَرُسُولِي وَلِالْوُمِنُونَ وَلَا لِمُعْلِكُمُ وَلِلْمُ مِنْ وَاللَّهِ اللَّهُ اللَّا اللَّهُ اللَّا اللَّهُ اللَّالِمُ اللَّهُ اللَّهُ اللَّهُ اللَّا اللَّالّ

EXAMINERS COMMITTEE

Dr. Mootasem A. Shahin

Ass. prof of Heat Engines

Military Technical College

Prof. Dr. Yhia H. El Banhawy

prof. of Heat Engines

Faculty of Engneering

AinShams University

Prof. Dr. Adel A. El Ehwany

Head of Mech. Power Eng. Dept.

Prof. of Heat Engines

Faculty of Engineering

Ain Shams University

Dr. Mahmoud A. El Rasheed

Ass. Prof. of Heat Engines

Faculty of Engineering

Ain Shams University

Signature

,

2

CLA:11

PREFACE

This dissertation is submitted to Ain Shams University for the degree of Master of Sience in Mechanical Engineering.

The work included in this thesis was carried out by the author in the Thermal Power Section, Department of Mechanical Power & Energy, Military Technical College from june 1993 to june 1995

No part of this thesis has been submitted for a degree at any other university.

Date:

Signature:

NAME: ELTANTAWY MOHAMED FARID

ABSTRACT

In the present work, an investigation of performance and pollution for spark ignition engine using gasoline-ethanol blends as a fuel is carried out. The study was performed for different percentages of ethanol (from 0 to 15%) in the blends, at variable engine speeds (from 1000 to 5000 rpm with a step of 500 rpm) and different conditions of throttle positions (from 25% to 100%).

The tested engine was 4 cylinder, 4 stroke with spark ignition type "Fiat-1300".

The tests were carried out to evaluate the engine power, engine torque, volumetric efficiency, brake thermal efficiency, fuel - air equivalence ratio, specific fuel consumption, heat rate, exhaust gas temperature and exhaust gas contents.

When increasing ethanol content in the blend, the experimental work revealed the following results:

- 1-The engine power is improved over the whole range of speeds and loads, also the engine torque increases at the medium speed range (of about 3000 rpm) but slighter improvement has been achieved at lower speeds, less than 3000 rpm.
- 2- The heat rate (specific heat consumption) seems to have a slight decrease while there was an increase in the brake thermal efficiency.

- 3- The volumetric efficiency slightly increases while the fuel air equivalence ratio slightly decreases. The exhaust gas temperature decreases for ethanol percentages more than 10%.
- 4- The quantity of carbon monoxide diminishes while the amount of carbon dioxide emitted becomes greater.
- 5- The hydrocarbon emission slightly increases while a slight decrease in nitric oxide has been achieved.

Acknowledgement

Countless thanks to ALLAH

My sincere gratitude to Prof. .Dr. Adel A. EL-Ehwany, Dr. Mahmoud A. EL Rasheed and Brig .Dr. Gaafar Hussein for their thoughtful supervision, valuable discussion, suggestions and encouragement during the course of the research work of this thesis.

Great thanks to Eng. Essam Hagag and Eng. Badr El din M. H. also to all the staff of Mechanical Power and Energy Department at M. T. C. for their contributions and sincere help during erection of test rig.

I present this work to my wife and sons "sherief and Rasha". for their patience, understanding, encouragement and sacrifice.

<u>CONTENTS</u>

			page
ABSTRACT			i
ACKNOWLEDGEMENT			Ш
CONTENTS			IV
LIST OF FIGURES			VII
LIST OF TABLES			XI
NOMENCLATURE			XIII
CHAPTER	1	INTRODUCTION	1
CHAPTER	2	REVIEW OF PREVIOUS WORK	4
CHAPTER	3	EXPERIMENTAL SET UP	9
		3-1 Introduction	9
		3-2 The test bed	9
		3-2-1 Engine	10
		3-2-2 Hydraulic dynamometer	11
		3-2-3 Brake power	11
		3-2-4 Fuelling system	12
		3-2-5 Air supply system	13
		3-3 Temperature measurements	15
		3-4 Speed measurements	16
		3-5 Exhaust gas content measurements	17
		3-5-1 Introduction	17
		3-5-2 Gas analyzer principle and	18
		operation	
		3-5-3 Measuring sequence	20

		V	
			page
CHAPTER	4	EXPERIMENTS AND TEST RESULTS	35
OTIVIL TEX	•	4-1 Introduction	35
		4-2 Presentation of the experimental	36
		results of pure gasoline operation	
		4-3 Presentation of the experimental	37
		results of the blends	
CHAPTER	5	ANALYSIS OF THE EXPERIMENTAL	50
OTH WILL	Ū	RESULTS	
		5-1 Introduction	50
		5-2 Effect of ethanol on engine power,	50
		and torque	
		5-3 Effect of ethanol on heat rate	53
		(specific heat consumption)	
		5-4 Effect of ethanol on volumetric	54
		efficiency	
		5-5 Effect of ethanol on fuel - air	54
		equivalence ratio	
		5-6 Effect of ethanol on exhaust gas	55
		temperature	
		5-7 Effect of ethanol on the emission of	56
		carbon monoxides	
		5-8 Effect of ethanol on the emission of	57
		carbon dioxides	
		5-9 Effect of ethanol on the emission of	57
		unburned hydrocarbons	

			page
		5-10 Effect of ethanol on the emission	58
		of nitrogen oxides	
CHAPTER	6	CONCLUSIONS AND	103
		RECOMMENDATIONS FOR FUTURE	
		WORK	
		6-1Conclusions	103
		6-2 Recommendations for future work	104
REFERENCS			105
APPENDIX	(i)	Comparitive cost of fuels	109
APPENDIX	(ii)	Example of calculations	112
APPENDIX	(iii)	Physical properties of gasoline	115
		and ethanol	
APPENDIX	(iv)	Main engine specifications	116
APPENDIX	(v)	Electronic balance specifications	117
APPENDIX	(vi)	Description of exhaust gas analyzer	118
APPENDIX	(vii)	Estimation of errors	124

LIST OF FIGURES

		page
Fig 3-1	Layout of the experimental test rig	21
Fig 3-2	A photograph of the experimental test facility	22
Fig 3-3	Circular potentiometer for measuring brake power	23
Fig 3-4	Layout of potentiometer of brake power	24
Fig 3-5	Calibration of dynamometer potentiometer output	25
Fig 3-6	Orifice calibration set up	26
Fig 3-7	Calibration set up for thermocouple	27
Fig 3-8	Calibration curve of exhaust gas thermocouple	28
Fig 3-9	Block diagram of triggering circuit	29
Fig 3-10	Triggering circuit	30
Fig 3-11	Flow of pulses through the sampling trigger circuit	31
Fig 3-12	Calibration curve of electronic circuit of measuring speed	32
Fig 3-13	Diagram of nondispersive, infrared gas analyzer (NDIRA)	33
Fig 3-14	Elements of the infrared analyzer	34
Fig 4-1	Measured exhaust gas contents, pure gasoline	42
Fig 4-2	Engine performance parameters, pure gasoline	43
Fig 4-3	Measured exhaust gas contents, 95%gasoline+5%ethanol	44
Fig 4-4	Engine performance parameters, 5% ethanol	45
Fig 4-5	Measured exhaust gas contents, 90%gasoline+10% ethanol	46
Fig 4-6	Engine performance parameters, 90%gasoline+10%ethanol	47
Fig 4-7	Measured exhaust gas contents, 85%gasoline+15%ethanol	48
Fig 4-8	Engine performance parameters, 85%gasoline+15%ethan	49

		page
Fig 5-1	Engine power with different ethanol percentage at load 25%	59
Fig 5-2	Engine power with different ethanol percentage at load 50%	60
Fig 5-3	Engine power with different ethanol percentage at load 75%	61
Fig 5-4	Engine power with different ethanol percentage at load100%	62
Fig 5-5	Engine torque with different ethanol percentage at load25%	63
Fig 5-6	Engine power with different ethanol percentage at load 50%	64
Fig 5-7	Engine power with different ethanol percentage at load 75%	65
Fig 5-8	Engine torque with different ethanol percentage at load100%	66
Fig 5-9	The behavior of engine torque with the speed at 50%&100%	67
	throttle position for 5&10&15% ethanol in fuel blends	
Fig 5-10	Heat rate with different ethanol percentage at load 25%	68
Fig 5-11	Heat rate with different ethanol percentage at load 50%	69
Fig 5-12	Heat rate with different ethanol percentage at load 75%	70
Fig 5-13	Heat rate with different ethanol percentage at load 100%	71
Fig 5-14	Heat Rate with Engine Torque at Different Ethanol and	72
	Constant Engine Speed	
Fig 5-15	Volumetric efficiency with different ethanol percentage at load	73
	25%	
Fig 5-16	Volumetric efficiency with different ethanol percentage at load	74
	50%	
Fig 5-17	Volumetric efficiency with different ethanol percentage at load	75
	75%	
Fig 5-18	Volumetric efficiency with different ethanol percentage at load	76
	100%	

	page
Fuel - air equivalence ratio with different ethanol percentage at	77
load 25%	
Fuel - air equivalence ratio with different ethanol percentage at	78
load 50%	
Fuel - air equivalence ratio with different ethanol percentage at	79
load 75%	
Fuel - air equivalence ratio with different percentage at load 100%	80
Exhaust gas temperature with different ethanol percentage at load	81
25%	
Exhaust gas temperature with different ethanol percentage at load	82
50%	
Exhaust gas temperature with different ethanol percentage at load	83
75%	
Exhaust gas temperature with different ethanol percentage at load	84
100%	
Carbon monoxide with different ethanol percentage at load 25%	85
Carbon monoxide with different ethanol percentage at load 50%	86
Carbon monoxide with different ethanol percentage at load 75%	87
Carbon monoxide with different ethanol percentage at load 100%	88
Carbon Monoxide with Engine Torque at Different Ethanol	89
Percentage and Constant Engine Speed	
	Fuel - air equivalence ratio with different ethanol percentage at load 50% Fuel - air equivalence ratio with different ethanol percentage at load 75% Fuel - air equivalence ratio with different percentage at load 100% Exhaust gas temperature with different ethanol percentage at load 25% Exhaust gas temperature with different ethanol percentage at load 50% Exhaust gas temperature with different ethanol percentage at load 75% Exhaust gas temperature with different ethanol percentage at load 100% Carbon monoxide with different ethanol percentage at load 25% Carbon monoxide with different ethanol percentage at load 50% Carbon monoxide with different ethanol percentage at load 75% Carbon monoxide with different ethanol percentage at load 75% Carbon monoxide with different ethanol percentage at load 100% Carbon Monoxide with Engine Torque at Different Ethanol

		page
Fig 5-32	Carbon dioxide with different ethanol percentage at load 25%	90
Fig 5-33	Carbon dioxide with different ethanol percentage at load 50%	91
Fig 5-34	Carbon dioxide with different ethanol percentage at load 75%	92
Fig 5-35	Carbon dioxide with different ethanol percentage at load	93
	100%	
Fig 5-36	Hydrocarbons with different ethanol percentage at load 25%	94
Fig 5-37	Hydrocarbons with different ethanol percentage at load 50%	95
Fig 5-38	Hydrocarbons with different ethanol percentage at load 75%	96
Fig 5-39	Hydrocarbons with different ethanol percentage at load 100%	97
Fig 5-40	Nitrogen oxides with different ethanol percentage at load 25%	98
Fig 5-41	Nitrogen oxides with different ethanol percentage at load 50%	99
Fig 5-42	Nitrogen oxides with different ethanol percentage at load	100
	75%	
Fig 5-43	Nitrogen oxides with different ethanol percentage at load	101
	100%	
Fig 5-44	Nitrogen oxides with Engine Torque at Different Ethanol	102
	Percentage and Constant Engine Speed	
Fig(I-1)	Economics of scale in ethanol production	111
Fig(IV-1)	Front side of exhaust gas analyzer	122
Fig(IV-2)	Back side of exhaust gas analyzer	123