DETECTION OF BCR-ABL GENE AND IT'S EXPRESSED PROTEIN (P210) IN PERIPHERAL BLOOD CELLS OF DIFFERENT PHASES OF CML

Thesis
Submitted for Partial Fulfillment of The M.D. Degree
In

Clinical and Chemical Pathology

By

Soha Ezzel Arab Abdul Wahab

M.B., B.Ch., M.Sc. (Clinical and Chemical Pathology)

Supervisors

Prof. Dr. Osaima El Said Seliem
Professor of Clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University

Prof. Dr. Salwa Mohamed YoussefProfessor of Clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University

Prof. Dr. Salwa Mohamed Abu El Ibana
Professor of Clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University

Prof. Dr. Gamal Mohamed Mabrouk Assistant Professor of Biochemistry and Molecular Biology Faculty of Medicine - Ain Shams University

Prof. Dr. Afaf Abd El Azez Abdul GhaffarAssistant Professor of Clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 1998

Before all, I would like to express my deep thanks to **ALLAH** without his great blessings, I would never accomplish this work.

Special Acknowledgment

The work presented in this thesis was performed at the Oncology Diagnostic Unit, Ain Shams University under supervision of Prof. Dr. Gamal Mabrouk and by help of Chemist Amr Amin .During my work, I was overwhelmed by the hospitality and kind care of the staff. My deepest appreciation to the support offered to me by Prof. Dr. Aly Khalifa Aly, Professor of Biochemistry and Head of the Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University for his valuable assistance and illuminating remarks

Acknowledgment

I would like to express my deepest gratitude to Prof.Dr. Osaima El-Said Seliem, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University who offered me the honor and chance to work under her most fruitful supervision and precious guidance.

I am much obliged to Prof.Dr. Salwa Mohamed Youssef, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her most valuable assistance and illuminating remarks.

An appreciation beyond utterance to the effort, kind support and patience offered by Prof. Dr. Salwa Mohamed Abu El-Hana, Proffessor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, her valuable instructions and critical mind brought out the final points of this research.

My deepest gratitude and appreciation are also due to Dr. Gamal Mohamed Mabrouk, Assistant Professor of Biochemistry, Faculty of Medicine, Ain Shams University for his valuable

instructions during the practical part of this work that brought out the final points of this research.

I wish to offer my thanks to Dr. Afaf Abd El-Aziz Abdul Ghafar, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University.

I would like also to send many thanks to Dr. Lama Akram El-Safady, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University.

TABLE OF CONTENTS

List of tables	i
List of figures	ii
List of photos	iv
List of abbreviations	V
ABSTRACT	1
INTRODUCTION AND AIM OF THE WORK	3
REVIEW OF LITERATURE	6
I-HUMAN CYTOGENETICS	6
Introduction	7
Methods of chromosome analysis	11
□ Karyotyping	11
□ Flowcytometry	17
Fluorescent in situ hybridization (FISH)	17
II-HUMAN MOLECULAR GENETICS	21
Introduction	23
DNA structure	23
Structural and functional component of the gene	25
Genetic code and protein synthesis	26
Gene expression	28
Regulation of gene expression	31
Basic techniques of DNA analysis	32
□ DNA extraction	32
u DNA amplification	33
Detection methods	52
III-CHRONIC MYELOGENOUS LEUKEMIA	58
Definition and history	59
Epidemiology and etiology	61
• Pathogenesis	62
Cytogenetic aspect of the disease	63
□ Variant Ph` translocation	65

Cytogenetic evolution in chronic phase	68
Cytogenetic evolution in acute phase	69
Molecular aspect of the disease	69
□ Variation of the breakpoint cluster region	79
□ Structure of BCR/ABL protein and disease phenotype	81
Cellular aspect of the disease	83
Diagnosis of CML	85
Course and prognosis	93
Disorders related to CML	93
Treatment of CML	96
SUBJECTS AND METHODS	99
RESULTS	126
DISCUSSION	148
CONCLUSION	154
RECOMMENDATIONS	155
SUMMARY	156
REFERENCES	160
ARABIC SUMMARY	

LIST OF TABLES

Table 1:	Cytogenetic and molecular events described about CML	70
Table 2:	The laboratory findings of the patients and control groups	130
Table 3:	The clinical findings of the patients and control groups	132
Table 4:	The results of BCR/ABL gene and its expressed protein	133
Table 5:	Results of Western blot analysis	134
Table 6:	Results of Rt-PCR amplification	134
Table 7:	Results of Western blot, dot blot, and PCR	134

LIST OF FIGURES

Figure 1:	Normal male chromosome	8
Figure 2:	Chromosome structure	9
Figure 3:	Preparation of a karyotype	13
Figure 4:	Normal G banded male karyotype	14
Figure 5:	Banding pattern by fluorescence and Giemsa stain	15
Figure 6:	DNA structure	24
Figure 7:	Structure of a typical human gene	25
Figure 8:	All the triplet codons have meaning: 61 represent amino acids, and 3 cause termination	26
Figure 9:	Representation of the way in which genetic information is translated into protein	27
Figure 10:	Diagram of transcription, post- transcriptional, translation and post- translational processing.	30
Figure 11:	Cloning	34
Figure 12:	Diagramatic representation of PCR	36
Figure 13:	QB replicase amplification	50
Figure 14:	Ligase chain reaction	5]
Figure 15:	Southern blot	53
Figure 16:	Trypsin-Giemsa anded metaphase from patient with CML	64
Figure 17:	Diagramatic representation of simple, variant and masked Ph`translocation	66
Figure 18:	trypsin-Giemsa banded metaphase cells from BM aspirate illustrating variant complex Ph`translocation.	67
Figure 19a:	Illustration of ABL, BCR and BCR/ABL gene	74
Figure 19b:	Breakpoints on chromosome 22 in Band q11 and Nearby regions, in various neoplasms	75

Figure 20:	The various types of breakpoints on BCR gene	80
Figure 21:	Proposed treatment approach in patients with CML	98
Figure 22:	Thermocycler	106
Figure 23:	Diagramatic representation of the primers	107
Figure 24:	Submarine chamber for agarose electrophoresis	112
Figure 25:	Ultratex tissue homogenizer	118
Figure 26:	Vertical electrophoresis set	119
Figure 27:	Transblotter	120
Figure 28:	Sex distribution among studied groups	135
Figure 29:	Distribution of the patients according to the phase of the disease	136
Figure 30:	Percent of reproducible results by Western blot and PCR	137
Figure 31:	Diagramatic representation of the type of BCR/ABL gene amplification	138

LIST OF PHOTOS

Photo 1:	Chromosome bands and regions	10
Photo 2:	Philadelphia chromosome by FISH	20
Photo 3:	Philadelphia chromosome	60
Photo 4:	ABL gene, BCR gene, BCR/ABL gene	72
Photo 5:	Different sensitivities of detecting the	91
	chemical cells by different techniques	
Photo 6:	Philadelphia chromosome by cytogenetics	139
Photo 7:	Western blot of chronic phase patients	140
Photo 8:	Bone marrow of patient in blastic crisis (n,	141
	24)	
Photo 9:	Western blotting of acceleration/blastic	142
	crisis patients	
Photo 10:	Dot blot results in different phases of CML	143
	with different change in intensity	
Photo 11:	Rt-PCR amplification of negative case and	144
	a case with RNA degradation	
Photo 12:	Representation of ABL, BCR/ABL gene	145
	amplification	
Photo 13:	Rt-PCR amplification of patients with b2a2	146
	transcript	
Photo 14:	Bone marrow aspirate from chronic phase	147
	patient (case, 23)	

LIST OF ABBREVIATIONS

<u>A</u>	Adenine
ABL	Abelson Leukemia
ALL	Acute Lymphoblastic Leukemia
AML_	Acute Myeloblastic Leukemia
APS	Amonium Persulphate
bcr	Breakpoint Cluster Region
Mbcr	Major Breakpoint Cluster Region
mbcr	Minor Breakpoint Cluster Region
μbcr	Mu Breakpoint Cluster Region
BCR	BCR gene
BM	Bone Marrow
BMT	Bone Marrow Transplantation
BSA	Bovine Serum Albumin
<u>C</u>	Cytosine
CBC	Complete Blood Count
cDNA	Complementary Deoxyribonucleic acid
CFU-E	Colony Forming Unit-Erythroid
CML	Chronic Myelogenous Leukemia
CML-N	Chronic Neutrophilic Leukemia
CMML	Chronic Myelomonocytic Leukemia
CSF	Colony Stimulating Factor
DNA	Deoxyribonucleic acid
dsDNA	Double Starnded Deoxyribonucleic acid
ssDNA	Single Stranded Deoxyribonucleic acid
EDTA	Ethyline Diamine Tetra-acetic Acid
EL	Eosinophilic Leukemia
FACS	Fluoresence Activated Cell Sorting
FISH	Fluorescence in Situ Hybridization
G	Guanine
G6PD	Glucose 6 Phospharte Dehydrogenase

J-CML	Juvenile Chronic Myeloid Leukemia
kb	Kilobase
Kd	Kilo Dalton
LM	Light Microscope
MUD	Matched Unrelated Donor
PB	Peripheral Blood
PBS	Phosphate Buffered Saline
Ph`	Philadelphia
PSCT	Potential Stem Cell Transplantation
RBCs	Red Blood Cells
RNA	Ribonucleic Acid
mRNA	Messenger Ribonucleic Acid
Rt-PCR	Reverse Transcriptase Polymerase Chain Reaction
T	Tyrosine
U	Uracil
WBCs	White Blood Cells

ABSTRACT

Chronic myelogenous leukemia (CML) is a disease characterized by the presence of a unique molecular marker; i.e., BCR/ABL fusion gene and its mRNA (Santini et al., 1996).

Ph' the of the disease is hallmark The generated reciprocal bv which is chromosome translocation of 9,22 fusing the ABL oncogene of q arm of chromosome 9 to the breakpoint cluster region within the BCR gene on chromosome 22. The BCR/ABL gene is transcribed into a BCR/ABL specific mRNA that is translated into P210 kd protein possessing enhanced tyrosine kinase activity as compared to that of normal protein (Melo, 1996).

A Western blotting as well as dot blot assays for the BCR/ABL fusion protein of circulating WBCs, in addition to Rt-PCR amplification for BCR/ABL gene were performed for 27/33 patients in different phases of the Ph' positive CML patients to assess their clinical utility in diagnosis and monitoring the disease.

Forty five blood samples were collected from 33 patients in different phases of the disease, at different times in addition to two control samples from patients with high total leukocytic count. However, only 27 of them gave a reproducible results.

We observed that, all studied cases 27/27 showed a positive result by dot blot assay in the form of bluish colored dots with different intensities corresponding to different phases of the disease.

On the other hand, Western blotting assay for chronic phase patients revealed a major band for