

Faculty of Science Geophysics Department

Assessment of Geothermal Resources at South East Gulf of Suez, Egypt using Geophysical, Geological and Temperature Well Data

A Thesis

Submitted for the Master Degree of Science as a Partial Fulfillment for the requirements of the Master of Science

To
Geophysics Department
Faculty of Science

Faculty of Science
Ain Shams University

Bv

Heba-T-allah Atef Mohamed El OkL (B.Sc in Geophysics, 2012)

UNDER SUPERVISION OF

Dr. Ahmed M. S. Abd El-Gawad

Assoc. Prof. Geophysics Depart.
Faculty of Science
Ain Shams University

Cairo, Egypt

Dr. Karam S. I. Farag

Lecturer Geophysics Depart.
Faculty of Science
Ain Shams University
Cairo, Egypt

Dr. Mohamed Abdel Zaher Mohamed Mahmoud

Researcher
National Research Institute of Astronomy and Geophysics
Helwan, Egypt

Cairo, 2015

Faculty of Science

NOTE

The present thesis is submitted from Heba-T-allah Atef Mohamed to the faculty of science, Ain Shams University in partial fulfillment for the requirements of Master of Science in Geophysics. Besides she attended five post graduate courses for one academic year in the following topics.

Course No.	Subject
Geoph. 601	Geophysical Field Methods, Numerical Analysis and computer programming.
Geoph. 611	Potential Theory and Electrical Methods.
Geoph. 612	Gravimetric and Magnetic Methods.
Geoph. 613	The Shape of the Earth and Plate Tectonics.
Geoph. 614	Radiometric and Electromagnetic Methods.

She has successfully passed the final examination of thesis courses, and English language exam (2013).

Prof. Dr. Said Abd Elmaboud Ali
Head of Geophysics Department
Faculty of Science
Ain Shams University

ACKNOWLEDGEMENTS

Praise is to Allah for granting me well and determination to complete this thesis.

First of all, I would like to thank **Geophysics Department**, **Faculty of Science**, **Ain Shams University** headed by **Prof. Dr. Said Abd Elmaboud Ali** for the continual assistance and permanent support. I have a great honor to be graduated from this department.

Also, I have great pleasure in expressing my deep gratitude to **Dr. Ahmed Moustafa** Prof. Ass. of Geophysics, Faculty of Science, Ain Shams University for his valuable guidance, fruitful supervision in this work, as well as his critical revision of the thesis.

My sincere thanks are given to **Dr. Karam Samir** Lecturer of Geophysics, Faculty of Science, Ain Shams University for his assistance in the gravity inversion in addition to his useful revision.

My great indebtedness and deepest gratefulness are given to **Dr.**Mohamed Abdel Zaher Researcher at the National Research Institute of Astronomy and Geophysics (NRIAG) for his continuous assistance and support in geothermal work and gravity inversion as well.

Thanks are also given **to Dr. Markku Pirttijärvi**, University of Oulu, Finland for providing GRABLOX Software, **Dr. Reda Gamel** Desert Research Institute for his help in collecting the previous work in the study area and **Mr. Mohamed Abdeldayem** Faculty of Science, Ain Shams University for his assistance in gravity separation.

Finally, I would like to express my deepest gratitude to **my family** for their permanent care and patience.

LIST OF CONTENTS

Subject	Page No.
LIST OF CONTENTS	i
LIST OF FIGURES	iii
LIST OF TABLES	X
ABSTRACT	xi
CHAPTER I: GEOLOGIC SETTING OF THE STUDY	1
AREA I.1 INTRODUCTION	1
I.2 TOPOGRAPHY AND GEOMORPHOLOGY	1 3
I.3 SURFACE GEOLOGY	5
I.4 SUBSURFACE STRATIGRAPHY	5
I.4.1 Pre-rift Lithostratigraphic Units	7
I.4.2 Syn-rift Lithostratigraphic Units	9
I.4.3 Post-rift Lithostratigraphic Units	9
I.5 STRUCTURAL SETTING OF THE GULF-OF-SUEZ BASIN	10
I.5.1 Northern Province	10
I.5.2 Central Province	10
I.5.3 Southern Province	13
I.6 TECTONIC FRAMEWORK	14
I.7 HYDROGEOLOGY	17
I.7.1 Thermal Water Distribution	18
I.7.2 Geochemistry of Groundwater of Egypt	20
I.7.3 Geochemistry of Groundwater of Study Area	23
I.8 GENERAL PREVIOUS WORK	27
CHAPTER II: GEOTHERMAL ACTIVITY IN EGYPT	29
WITH SPECIAL EMPHASIS ON GULF-OF-	
SUEZ U.1. Coothormal Potential of Forms	20
II.1 Geothermal Potential of EgyptII.2 Geothermal Activity around Red sea and Gulf-of-Suez	29 32
II.3 Utilization of Geothermal Resources	38

CHAPTER III: GRAVITY DATA INTERPRETAION	45
III.1 INTRODUCTION	45
III.2 BOUGUER GRAVITY DATA	46
III.3 GRAVITY SEPARATION	48
III.3.1 Regional Anomaly Map	49
III.3.2 Residual Anomaly Map	55
III.4 SECOND VERTICAL DERIVATIVE	55
III.5 TECTONIC TREND ANALYSIS	64
III.6 THREE-DIMENSIONAL (3D) INVERSION OF	78
GRAVITY DATA	
III.6.1 Principles of Gravity Modeling	81
III.6.2 Three Dimensional (3D) Inversion of the Gravity	83
Data	
CHAPTER IV: GEOTHERMAL WORK	95
IV.1 INTRODUCTION	95
IV.2 MEASUREMENTS TECHNIQUES BACKGROUND	96
IV.2.1 Bottom-Hole Temperatures in Deep Wells	98
IV.3 BOTTOM HOLE TEMPERATURE CORRECTION	100
IV.3.1 Horner Method	101
IV.3.2 Waples and Mahadir Method	105
IV.4 GEOTHERMAL GRADIENT	107
IV.4.1 Geothermal Gradient Calculation	108
IV.4.2 Geothermal Gradient Map Discussion	111
IV.5 HEAT FLOW	113
IV.5.1 Heat Flow Map Discussion	117
CHAPTER V: INTEGRATION BETWEEN GRAVITY AND	120
GEOTHERMAL METHODS	
V.1 CONCEPTUAL MODEL OF GEOTHERMAL SYSTEM IN	120
THE STUDY AREA	
V.2 ROLE OF GEOTHERMAL IN MATURATION OF	123
HYDROCARBON	
V.2.1 Maturation of Petroleum	126
V.2.2 Depth to Oil Window Determination	128
V.3 ASSESSMENT OF GEOTHERMAL POTENTIAL IN THE	133
STUDY AREA	100
CHAPTER VI: SUMMARY AND CONCLUSIONS	137
RECOMMENDATION	142
REFERENCES	143
ARABIC SUMMARY	

LIST OF FIGURES

Fig. No.		Pag
		No
Fig. 1	Location map of the study area.	2
Fig. 2	Topographic map of Gulf-of-Suez.	4
Fig. 3	Surface geologic map of the study area.	6
Fig. 4	Stratigraphic column of Gulf-of-Suez.	8
Fig. 5	Geologic map shows three tectonic provinces of	11
	the Gulf-of-Suez.	
Fig. 6	Major oil fields in Gulf-of-Suez.	12
Fig. 7	The deduced kinematic model of Sinai Peninsula	15
	explains the implications of deformation, stress	
	and tectonic activities in the Sinai Peninsula.	
Fig. 8	Map of water samples locations for the water	19
	geothermometry study.	
Fig. 9	Geographical distribution of different	20
	groundwater types reproduced by Boulos (1990)	
	from individual distribution maps.	
Fig. 10	Representation of groundwater samples collected	23
	by Yosef (2004).	
Fig. 11	Representation of groundwater samples collected	25
	by Yosef (2004) & Hamam Musa groundwater	
	sample after El-Fiky (2009) on Cl-SO4-	
	HCO3Ternary plot.	

Fig. No.		Page No.
Fig. 12	Representation of groundwater samples collected	26
	by Yosef (2004) & Hamam Musa groundwater	
	sample after El-Fiky (2009) on Ternary diagram	
	of the water-rock equilibration temperatures.	
Fig. 13	Location of different hot springs in Egypt with	29
	surface temperature indicated.	
Fig. 14	World pattern of plates showing the locations of	32
	ring of fire.	
Fig. 15	Heat flow in eastern Egypt south of 26 ° N	33
	plotted as a function of distance from the Red	
	Sea coastline.	
Fig. 16	Diagram showing the utilization of geothermal	39
	fluids.	
Fig. 17	Sketch of Kalina Binary Power Plant.	42
Fig. 18	Sketch of typical application of ground-coupled	44
	heat pump system.	
Fig. 19	Bouguer gravity contour map of the study area.	47
Fig. 20	Regional gravity contour map at depth of	50
	separation about 1.0 km.	
Fig. 21	Regional gravity contour map at depth of	51
	separation about 2.0 km.	
Fig. 22	Regional gravity contour map at depth of	52
	separation about 3.0 km.	
Fig. 23	Regional gravity contour map at depth of	53
	separation about 4.0 km.	

	Page
	No.
Stack regional gravity contour maps from 1.0 to	54
4.0 km.	
Residual gravity contour map at depth of	56
separation about 1.0 km.	
Residual gravity contour map at depth of	57
separation about 2.0 km.	
Residual gravity contour map at depth of	58
separation about 3.0 km.	
Residual gravity contour map at depth of	59
separation about 4.0 km.	
Stack residual gravity contour maps from	60
1.0 to 4.0 km.	
Second derivative contour map of the study	63
area.	
Fault segments dissecting the subsurface	67
section of the study area derived from	
Bouguer gravity map.	
Fault segments dissecting the subsurface	68
·	
	69
·	
	70
	70
·	
	4.0 km. Residual gravity contour map at depth of separation about 1.0 km. Residual gravity contour map at depth of separation about 2.0 km. Residual gravity contour map at depth of separation about 3.0 km. Residual gravity contour map at depth of separation about 4.0 km. Stack residual gravity contour maps from 1.0 to 4.0 km. Second derivative contour map of the study area. Fault segments dissecting the subsurface section of the study area derived from Bouguer gravity map. Fault segments dissecting the subsurface section of the study area derived from regional map at 1.0 km

Fig. No.		Page No.
Fig. 35		71
	section of the study area derived from regional	
	map at 4.0 km.	
Fig. 36		72
	section of the study area derived from residual	
	map at 1.0 km.	
Fig. 37	Fault segments dissecting the subsurface	73
	section of the study area derived from residual	
	map at 2.0 km.	
Fig. 38	Fault segments dissecting the subsurface	74
	section of the study area derived from residual	
	map at 3.0 km.	
Fig. 39	Fault segments dissecting the subsurface	75
	section of the study area derived from residual	
	map at 4.0 km.	
Fig. 40	Rose diagrams derived from Bouguer,	77
	regional gravity contour maps from 1.0 to 4.0	
	km and residual gravity contour maps from	
	1.0 to 4.0 km respectively.	
Fig.41	Three categories of techniques to interpret	80
	potential field data.	
Fig. 42	Gravity field on arbitrary shape at point P(x,	82
	y , z) due to mass distribution $\rho(x', y', z')$.	
Fig. 43	Block model of size dX.dY.dZ divided into	85
	nx.ny.nz minor-blocks of size dx.dy.dz.	

Fig. No.		Page No.
Fig. 44	a) Plan view of the grid blocks for the comprehensive 3D gravity model of the study area, b) Initial (start) 2D layered earth density model showing two subsurface layers; sedimentary and basement rocks.	86
Fig. 45	a) Observed and b) Calculated gravity data and corresponding c) RMS misfit of the study area.	88
Fig. 46	a) Computed and measured gravity data over b) 2D layered- earth density model along c) vertical slice j=24 passing through well SB- 276.	89
Fig. 47	a) Computed and measured gravity data over b) 2D layered- earth density model along c) vertical slice j=41 passing through well SB-296.	90
Fig. 48	a) Computed and measured gravity data over b) 2D layered- earth density model along c) vertical slice j=48 passing through well GS- 325.	91
Fig. 49	a) Computed and measured gravity data over b) 2D layered- earth density model along c) vertical slice j=33 passing through Hamam Musa hot spring.	92

Fig. No.		Page No
Fig. 50	Depth of basement map of the study area	93
	derived from gravity inversion	
Fig. 51	3D basement view of the study area resulted	94
	from gravity inversion.	
Fig. 52	Classification of direct and indirect techniques	96
	of thermal data.	
Fig. 53	Example of the correction of BHT data for well	104
	no. 4 mentioned in table 1 using the Horner	
	method.	
Fig. 54	Location map of some wells on which BHT	106
	corrections were applied and listed in Table 2.	
Fig. 55	Relation between temperature and depth of	112
	BHT wells.	
Fig. 56	Geothermal gradient map using corrected BHT	114
	from 72 deep oil wells. Crosses refer to the	
	location of BHT logs of oil wells.	
Fig. 57	Heat flow map of study area.	119
Fig. 58	Correlation of 3D view of depths of basement	122
	surface (m) derived from gravity modeling and	
	the geothermal gradient map (°C/m).	
Fig. 59	Conceptual model of geothermal system in the	124
	study area.	
Fig. 60	General schematic of hydrocarbon formation as	127
	a function of burial of the source rock	

Fig. No.		Page No.
Fig. 61	Relation between temperature gradient and oil	129
	window.	
Fig.62	Stack maps shows a) Depth to oil ceiling, b) Depth to oil floor and c) Depth to oil window.	130

LIST OF TABLES

Table. No.		Page.
		No
Table. 1	Example of Bottom Hole Temperature	101
	measurements of well no. 4 used in this study.	
Table. 2	Sample of bottom hole temperature data after	106
	correction using two different methods;	
	Waples and Horner methods.	
Table. 3	Geothermal Parameters of oil well data of the	109
	study area.	
Table. 4	Thermal conductivity measured by in the	116
	southern part of the Gulf-of-Suez (Morgan et	
	al, 1983).	
Table. 5	Calculated values of the depth to oil ceiling,	131
	depth to oil floor and depth to oil window in	
	the study area.	
Table. 6	The parameters used in the assessment of	136
	geothermal potential.	

ABSTRACT

The Gulf-of-Suez region represents the most promising area in Egypt for geothermal exploration which is characterized by superficial thermal manifestations represented by a cluster of hot springs with varying temperatures from 35 to 72 °C. The main purpose of the present thesis is to shed the light on the integration between gravity work and geothermal data in detecting the main subsurface structures in addition to expecting the geothermal sources in the area under consideration.

Correction was applied on the bottom hole temperature data to obtain the true formation equilibrium temperatures that can provide useful information about the subsurface thermal regime. Based on these logging data, temperature gradient and heat flow values computed at each well, it is found that the mean geothermal gradient of the study area is 32 °C/km nevertheless some local geothermal potential fields were located with more than 40 °C/km. Also, heat flow values are ranging from 45 to 115 mW/m².

The Bouguer gravity anomaly map of the study area was used for delineating the subsurface structures and tectonic trends that have resulted in a potential heat source. The gravity inversion revealed a good correlation between areas of high temperature gradients, high heat flow and positive gravity anomalies. The high temperature gradient and heat flow values suggested being associated with a noticeable hydrothermal source of heat anomaly located at relatively shallow depths which is expected to be due to the uplift of the basement in the area.

Moreover, a relation between temperature gradient and depth to oil window was derived to show the role of temperature gradient in the maturation of hydrocarbon. Finally, a conceptual model of the hydrothermal system in the study area was drawn and thus the geothermal reserve of the study area was calculated in order to know the availability of constructing power plant for electricity generation or any other utilization.