

Radon and thoron measurements in ancient Egyptian places using developed nuclear techniques

Thesis Submitted to Physics Department Faculty of Science, Ain Shams University

In

Partial Fulfillment of the Requirements for the Ph.D. Degree in Science

By

Mohamed Ehab Ahmed Fakher El-Din Bakr

B.Sc. (Physics), 2006 M.Sc. (Nuclear Physics), 2011

Supervisors

Prof. Dr. Samir El-Kamessy

Professor, Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. Soad Abdel Monam El-Fiki

Professor, Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. Ossama Nasser

Head of Basic Science Department, Faculty of Engineering and Technology, Future University in Egypt.

Prof. Dr. Werner Rühm

Head of Individual Dosimetry Group, Institute of Radiation Protection, Helmholtz Center in Munich, Germany

Dr. Elsayed Salama Ahmed

Assistant Professor, Physics Department, Faculty of Science, Ain Shams University

Ain Shams University Faculty of Science Physics Department

Degree: Philosophy Doctoral of Science (Ph.D. degree in Physics)

Title: Radon and thoron measurements in ancient Egyptian places using developed nuclear techniques.

Name: Mohamed Ehab Ahmed Fakher El-Din Bakr

Thesis Advisors	Approved
Prof. Dr. Samir El-Kamessy	
Professor, Physics Department, Faculty of Science, Ain Shams University.	
Prof. Dr. Soad Abdel Monam El-Fiki	
Professor, Physics Department, Faculty of Science, Ain Shams University.	
Prof. Dr. Ossama Nasser	
Head of Basic Science Department, Faculty of	
Engineering and Technology, Future University in	
Egypt.	
Prof. Dr. Werner Rühm	
Head of Individual Dosimetry Group, Institute of	
Radiation Protection, Helmholtz Center in	
Munich, Germany	
Ass. Prof. Elsayed Salama Ahmed	
Assistant Professor, Physics Department, Faculty	
of Science, Ain Shams University	

Acknowledgement

I would like to express my heartfelt thanks and deeply grateful to:

Prof. Dr. Samir El-Khameesy.

Prof. Dr. Soad El-Fiki.

Prof. Dr. Ossama Nasser.

Prof. Dr. Werner Rühm.

Assistant Prof. El-Sayed Salama.

For their supervision, continuous and useful advice, helpful support and discussions, encouragement and guidance throughout this dissertation. I really owe much of my success in the accomplishment of this work to them.

I dedicate my deep thanks to the **Future University in Egypt** for the excellent financial support they always offered.

Furthermore, I would like to express my deeply indebted to **Institute of Radiation Protection, Helmholtz Center in Munich** for the experimental facilities they offered during this dissertation.

		Page
Abstract		I
Summar	y	IV
List of Fi	gures	VI
List of Ta	ables	XI
Chapter	1: Introduction	
1.1	Introduction	1
1.2	Literature review	3
1.2.1	Historical background	3
1.2.2	Radon and thoron measurements	4
1.3	Scope and objectives of the present study	8
Chapter	2: Theoretical Aspects	
2.1	Radon	10
2.1.1	Radon properties	10
2.1.2	Radon isotopes	11
2.1.3	Radon daughters	12
2.1.4	Radon risks	13
2.1.5	Radon emanation	14
2.1.6	Radon transport and diffusion	15
2.1.7	Radon concentration in air	16
2.1.7.1	Indoor radon concentration	16
2.1.7.2	Outdoor radon concentration	17
2.2	Radiation health hazards	18
2.2.1	Radium equivalent activity (Ra _{eq})	18
2.2.2	The internal external absorbed dose rate (D)	18

2.2.3	The annual effective dose (EAD)	19
2.2.4	The external hazard index (H _{ex})	19
2.2.5	The representative level index $(I_{\Upsilon r})$	20
2.3	Equilibrium factor and working level	20
2.4	Occupational radon exposures and effective	21
2.5	Thoron effective doses	22
Chapter 3: I	Features of Studied Regions	
3.1	History	23
3.2	Geography of Egypt	24
3.3	Studied regions and their features	26
3.3.1	Saqqara	26
3.3.1.1	East sector	27
3.3.1.1.1	Zoser Pyramid	27
3.3.1.1.2	South tomb of Zoser Pyramid	28
3.3.1.2	Western sector	29
3.3.1.2.1	Serapeum	29
3.3.2	Luxor	30
3.3.2.1	Valley of kings	31
3.3.2.1.1	Tomb of RAMESES II SONS (KV 5)	32
3.3.2.1.2	Tomb of RAMESES II (KV 7)	33
3.3.2.1.3	Tomb of RAMESES V and RAMESES VI (KV 9)	34
3.3.2.1.4	Tomb of BAY (KV 13)	35
3.3.2.1.5	Tomb of "Unknown Name" (KV 21)	36
3.3.2.1.6	Tomb of "Unknown Name" (KV 26)	36
3.3.2.1.7	Tomb of "Unknown Name" (KV 31)	37
3.3.2.1.8	Tomb of TIA'A (KV 32)	38
3.3.2.1.9	Tomb of THUTMES III (KV 34)	39
3.3.2.1.10	Tomb of AMENHETEP II (KV 35)	40
3.3.2.1.11	Tomb of THUTMES I (KV 38)	41

3.3.2.1.12	Tomb of "Unknown Name" (KV 40)	42
3.3.2.1.13	Tomb of YUYA and THUYU (KV 46)	42
3.3.2.1.14	Tomb of TIYE (Unknown) OR AKHENATEN	43
	(Unknown) (KV 55)	
Chapter 4:	Experimental Techniques	
4.1	Radioactivity measurements	45
4.1.1	Gamma-ray spectrometer device	45
4.1.1.1	Energy calibration	47
4.1.1.2	Efficiency calibration	48
4.1.2	Material and methods	50
4.2	Radon concentration measurements	51
4.2.1	AlphaGUARD radon monitor	51
4.2.1.1	Device calibration	52
4.2.2	Portable radon and thoron monitor [RTM 1688-2]	53
4.2.2.1	Device properties	54
4.2.3	New electronic exposure meter	54
4.2.3.1	Rule	54
4.2.3.2	Technical recognition	55
4.2.3.2.1	Power supply	56
4.2.3.2.2	Detector	56
4.2.3.2.3	Pre-amplifier	56
4.2.3.2.4	Pulse shaper	56
4.2.3.2.5	Amplifier	57
4.2.3.2.6	Energy discriminator	57
4.2.3.2.7	Microcontroller	57
4.2.3.3	Device calibration	58

Chapter 5	5: Results and Discussions	
5.1	Gamma spectrometric analysis	60
5.1.1	Saqqara region measurements	60
5.1.2	Luxor region measurements	61
5.2	Radiation hazard parameters	62
5.2.1	Saqqara region	63
5.2.2	Luxor region	64
5.3	Radon concentration	65
5.3.1	Saqqara region measurements	66
5.3.2	Luxor region measurements	71
5.4	Personal radon concentrations	77
5.5	Thoron concentrations	78
Chapter (6: Theoretical Modeling	
6.1	Analytical modeling of indoor radon Concentration	80
6.2	Computational Fluid Dynamics (CFD) Model for natural ventilation rate calculation	84
6.3	Radon equilibrium factor and ventilation rate	90
6.4	Results and discussion	92
Conclusio	on	103
Reference	es	105
Arab Sun	nmery	

		Title	Page
Figure 2.1	:	The middle part of ²³⁸ U decay series.	12
Figure 3.1	:	Geography of Egypt	24
Figure 3.2	:	Location of Saqqara in Egypt Map	26
Figure 3.3	:	Mortuary Complex of King Zoser	27
Figure 3.4	:	Substructure and the building stages of Zoser's Step Pyramid	27
Figure 3.5	:	The substructure of the South tomb of Zoser Complex.	29
Figure 3.6	:	Serapeum of Saqqara map	30
Figure 3.7	:	Luxor City Map [www.memphistours.co.uk]	30
Figure 3.8	:	Valley of Kings	31
Figure 3.9	:	Tomb KV 5	32
Figure 3.10	:	Tomb KV 7	33
Figure 3.11	:	Tomb KV 9	34
Figure 3.12	:	Tomb KV 13	35
Figure 3.13	:	Tomb KV 21	36
Figure 3.14	:	Tomb KV 26	37

Figure 3.15	:	Tomb KV 31	37
Figure 3.16	:	Tomb KV 32	38
Figure 3.17	:	Tomb KV 34	39
Figure 3.18	:	Tomb KV 35	40
Figure 3.19	:	Tomb KV 38	41
Figure 3.20	:	Tomb KV 40	42
Figure 3.21	:	Tomb KV 46	43
Figure 3.22	:	Tomb KV 55	43
Figure 4.1	:	Block diagram of HPGe detector setup.	47
Figure 4.2	:	Energy calibration of HPGe detector using multipoint sources.	48
Figure 4.3	:	Absolute efficiency curve	49
Figure 4.4	:	The fluctuation of the AlphaGUARD calibration factor C/C_s around unity (C is the AlphaGUARD reading and C_s the standard concentration).	53
Figure 4.5	:	RTM 1688-2 measurement device	53
Figure 4.6	:	Schematic circuit diagram of the exposure meter [Karinda, et al., 2008]	55
Figure 4.7	:	The new radon exposure meter [Karinda, et al., 2008]	58
Figure 4.8	:	Calibration process of the new radon exposure meter	59

Figure 4.9	:	Result of the new exposure meter calibration. Error bars represent one sigma-statistical uncertainties	59
Figure 5.1	:	Seasonal variation of the radon concentration in Soltomb. Error bars represent one sigma-statistic uncertainties.	67
Figure 5.2	:	Seasonal variation of the radon concentration in Zoser Pyramid. Error bars represent one sigma-statistical uncertainties.	68
Figure 5.3	:	Seasonal variation of the radon concentration in Serapeum tomb (Pos.1). Error bars represent one sigma-statistical uncertainties.	68
Figure 5.4	:	Seasonal variation of the radon concentration in Serapeum tomb (Pos.2). Error bars represent one sigma-statistical uncertainties.	68
Figure 5.5	:	Seasonal variation of the radon concentration in Serapeum tomb (Pos.3). Error bars represent one sigma-statistical uncertainties.	69
Figure 5.6	:	Seasonal variation of the radon concentration in Serapeum tomb (Pos.4). Error bars represent one sigma-statistical uncertainties.	69
Figure 5.7	:	Seasonal variation of radon concentration in KV34 (Middle Chamber). Error bars represent one sigma-statistical uncertainties.	73
Figure 5.8	:	Seasonal variation of radon concentration in KV34 (Inner Chamber). Error bars represent one sigmastatistical uncertainties.	74

Figure 5.9	: Radon concentration measured in KV9 and individual radon concentration of the corresponding guard. Error bars represent one sigma-statistical uncertainties.	77
Figure 6.1	: Schematic representation of cross-stream interfacial mixing between counter-flowing streams due to the density and temperature difference around the doorway of a sealed room.	85
Figure 6.2	: Designed system used for the measurement of the radon exhalation rate.	93
Figure 6.3	: Theoretical Vs. experimental radon concentration for KV5 tomb. Error bars represent one sigma-statistical uncertainties.	94
Figure 6.4	: Theoretical Vs. experimental radon concentration for KV7 tomb. Error bars represent one sigma-statistical uncertainties.	94
Figure 6.5	: Theoretical Vs. experimental radon concentration for KV9 tomb. Error bars represent one sigma-statistical uncertainties.	94
Figure 6.6	: Theoretical Vs. experimental radon concentration for KV13 tomb. Error bars represent one sigma-statistical uncertainties.	95
Figure 6.7	: Theoretical Vs. experimental radon concentration for KV31 tomb. Error bars represent one sigma-statistical uncertainties.	95
Figure 6.8	: Theoretical Vs. experimental radon concentration for KV32 tomb. Error bars represent one sigma-statistical uncertainties.	95

Figure 6.9	: Theoretical Vs. experimental radon concentration for KV34 tomb. Error bars represent one sigma-statistical uncertainties.	96
Figure 6.10	: Theoretical Vs. experimental radon concentration for KV35 tomb. Error bars represent one sigma-statistical uncertainties.	96
Figure 6.11	: Theoretical Vs. experimental radon concentration for KV38 tomb. Error bars represent one sigma-statistical uncertainties.	96
Figure 6.12	: Theoretical Vs. experimental radon concentration for KV46 tomb. Error bars represent one sigma-statistical uncertainties.	97
Figure 6.13	: Theoretical Vs. experimental radon concentration for KV55 tomb. Error bars represent one sigma-statistical uncertainties.	97
Figure 6.14	: A correlation between the measured and expected values of radon concentrations based on the present model.	100
Figure 6.15	: The sensitivity of indoor radon concentration to the wind speed. Wind speeds were measured in m/s.	101

List of Tables

	Title	Page
Table 2.1	: Some radon properties [NCRP, 1998]	11
Table 2.2	: The important parameters of radon, thoron and their daughters.	13
Table 4.1	: Relative intensities of γ -rays from ^{226}Ra and its short lived daughters.	49
Table 4.2	: Absolute efficiency curve	49
Table 5.1	: Specific activity of ²²⁶ Ra, ²³² Th and ⁴⁰ K in Bq/kg for selected Saqqara tombs. Uncertainties are given in terms of one sigma standard error.	61
Table 5.2	: Specific activity of ²²⁶ Ra, ²³² Th and ⁴⁰ K in Bq/kg for selected Luxor tombs. Uncertainties are given in terms of one sigma standard error.	62
Table 5.3	: Radium equivalent activity (Ra _{eq}) in Bq/kg, external hazard index (H _{ex}) in Bq/kg, representative level index (I _{Yr}) in Bq/kg, internal external absorbed dose rate (D) in nGy/h, and annual effective dose (EAD) in mSv/y in three investigated locations inside Saqqara region. Uncertainties are given in terms of one sigma standard error.	63
Table 5.4	: Radium equivalent activity (Ra _{eq}) in Bq/kg, external hazard index (H_{ex}) in Bq/kg, representative level index ($I_{\Upsilon r}$) in Bq/kg, internal external absorbed dose rate (D) in nGy/h, and annual effective dose (EAD) in mSv/y in	65

List of Tables

the investigated locations inside Luxor region. Uncertainties are given in terms of one sigma standard error.

- Table 5.5 : Radon concentration measurements as taken by realtime exposure meters (uncertainties are given in terms
 of standard errors of the means and include a 5%
 uncertainty due to calibration).
- Table 5.6: The equilibrium factor (F), working level (WL) and dose rate for the studied Saqqara tombs (For new detector: winter measurements were taken in November, 2013 and summer measurements were taken in May, 2014).
- Table 5.7 : The annual effective dose for workers, tour guides and visitors (Winter measurements were taken in November, 2013 and summer measurements were taken in May, 2014).
- Table 5.8: Seasonal variation of average radon concentrations
 inside the studied Luxor tombs in Bq/m³ (uncertainties are given in terms of standard errors of the means and include a 5% uncertainty due to calibration). For the present work: summer measurements were taken in August, 2014 and winter measurements were taken in February, 2013.
- **Table 5.9**: Working level (WL) and effective dose rates for the studied selected tombs (Winter measurements were taken in February, 2013 and summer measurements were taken in August, 2014). F-value of 1 was assumed.

List of Tables

- **Table 5.10**: The annual effective dose for workers, tour guides and visitors (Winter measurements were taken in February, 2013 and summer measurements were taken in August, 2014).
- Table 5.11: Radon and thoron concentrations for the studied tombs in Saqqara region. Uncertainties are given from 3% 5% for radon measurements and from 50% 64% for thoron measurements as a systematical device errors.
- Table 6.1 : Theoretical Vs. experimental radon concentration for the studied tombs in Bq/m³ for the summer season. Using average exhalation rate of 86.74 Bq.m⁻².h⁻¹ and source density of 2.70 g.cm⁻³ (Column 6: For the equilibrium factor calculations, the possible deposition of the decay products to ceiling and walls of the tombs was neglected) (Column 7: Uncertainties are given in terms of the exhalation rate calculations which includes a 5% uncertainty due to calibration) (Column 8: Uncertainties are given in terms of standard errors of the means and include a 5% uncertainty due to calibration).

99

Table 6.2 : Theoretical Vs. experimental radon concentration for the studied tombs in Bq/m³ for the winter season. Using average exhalation rate of 86.74 Bq.m⁻².h⁻¹ and source density of 2.70 g.cm⁻³ (Column 6: For the equilibrium factor calculations, the possible deposition of the decay products to ceiling and walls of the tombs was neglected) (Column 7: Uncertainties are given in terms of the exhalation rate calculations which includes a 5% uncertainty due to calibration) (Column 8: Uncertainties are given in terms of standard errors of the means and include a 5% uncertainty due to calibration).