Ain Shams University Faculty of Girls for Arts, Science and Education

Study Of The Level Structure Of 115 In

A Thesis

Submitted to College for Girls Ain Shams Universit for the Degree of Ph.D (Physics)

531.7

Ву

Youssef Moresy

Supervisors

Prof. Dr. Ali Mohamed El Naem
Faculty of Computer Science
and Information Systems
Ain Shams University

Dr. Samia Abdel Malak
Faculty of Girls
Ain Shams University

Dr. Amany Sroor
Faculty of Girls
Ain Shams University

Dr. Magda Abdel Wahab
Faculty of Girls
Ain Shams University

61706

1997

Ain Shams University Faculty of Girls for Arts, Science and Education

Thesis for Ph.D In Physics

Zeinab Youssef Moresy TITLE OF THESIS

Study Of The Level Structure Of 115 In

Thesis Supervisors:

1-Prof. Dr.: Ali Mohamed El Naem Professor of Theoretical Nuclear Physics Ain Shams University

2-Assis. Prof. Dr. : Samia Abdel Malak Assistant Professor of Nuclear Physics

Ain Shams University

3-Dr. Amany Sroor Lecturer of Nuclear Physics Ain Shams University

4-Dr. Magda El Said Abdel Wahab Lecturer of Nuclear Physics Ain Shams University

Date of Research:

Approval of Faculty Council:

/ /1997

Date of Approval: / /1997

Approval stamp:

Approval of University Council:

ACKNOWLEDGEMENT

I Wish to express my deep thanks to my supervisors

1- Professor Dr. Ali Mohamed El Naem
Professor of Theoretical NuclearPhysics Ain Shams University

2- Assistant Professor Dr. Samia Abdel Malak
Assis. Professor of Nuclear Physics Ain Shams University

3- Dr. Amany Sroor
Lecturer of Nuclear Physics Ain Shams University

4- Dr. Magda El Said Abdel Wahab
Lecturer of Nuclear Physics Ain Shams University

Also I wish to thank

1- Dr. Afaf Nada

2- Dr. Samia Sadek

3- Dr. Hala Khalil

TABLE OF CONTENTS

	Page
Acknowledgement	
Abstract	
Summary	1
List of Figures	6
List of Tables	8
CHAPTER I	
NUCLEAR MODELS	9
1.1 Independent Particle Model	9
1.1.1 Spherical Symmetric Potential	10
1.1.1.i Square Well	10
1.1.1.ii Harmonic Oscillator	10
1.1.2 Nilsson Model	12
1.2 Hartree-Fock Field As Average Field	12
1.3 Shell Model	12
1.4 The Unified Model	13
1.4.1 Vibrational Model	14
1.4.2 Rotational Model	15
1.5 Weak Coupling Model	17
1.6 Numerical Calculations	23
CHAPTER II	
BASIC PROPERTIES OF NUCLEAR STATES	26
2.1 Radioactivity	26
2.2 Properties Of Nuclear States	28
2.2.1 Energy	28
2.2.2 Isotopic Spin of the Nucleon	29
2.2.3 Angular Momentum	31
2.2.4 Parity	31
2.2.5 Parity Considerations and Selection Rules	32
2.2.6 Nuclear Dipole Magnetic Moment	33
2.2.7 Nuclear Electric Quadrupole Moment	33

2.2.8 Life Time
2.3 Beta Decay
2.4 Gamma Decay
2.4.1 Transition Probability for Gamma Decay
2.4.2 Log ft
2.5 Internal Conversion
2.6 Determination Of Energy Of Nuclear Energy Levels
2.7 Determination Of Nuclear Spins And Parities
CHAPTER III
MEASUREMENTS OF SINGLES AND GAMMA-
GAMMA COINCIDENCE SPECTRA
3.1 Gamma Ray Singles Spectrometer
3.1.1 Hyper pure germanium Detector
3.1.2 Preamplifier
3.1.3 Spectroscopy Amplifier
3.1.4 Multichannel Analyzer
3.2 Calibration Of The Gamma-Ray Singles
Spectrometer
3.2.1 Energy Resolution
3.2.2 Accuracy of Energy Determination
3.2.3 Efficiency of the Detector and Gamma-ray Relative
Intensity Determination
3.2.4 Log ft Calculations
3.3 Coincidence Measurements
3.3.1 Introduction
3.3.2 Procedure of Gamma-gamma Coincidence
3.3.2.1 Scintillation Detector
3.3.2.2 Timing Filter Amplifier
3.3.2.3 Constant Fraction Discriminator
3.3.2.4 Time to Amplitude Converter
3.3.2.5 Timing Single Channel Analyzer
3.3.2.6 Coincidence Unit
3.3.2.7 Gate and Delay Generator

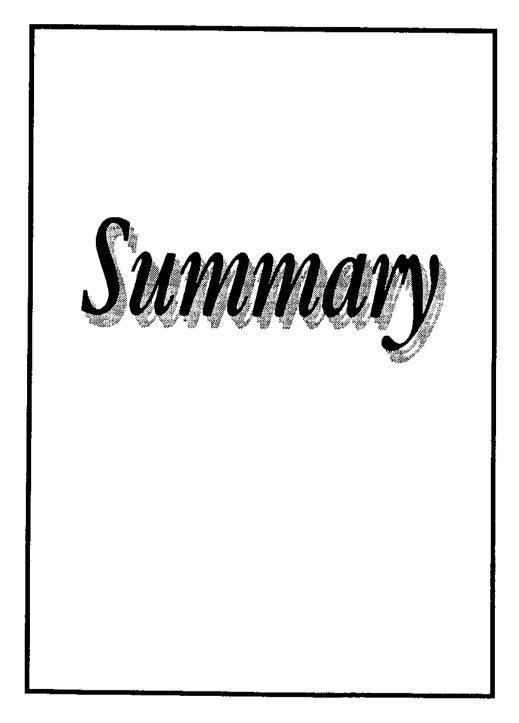
CHAPTER IV	70
RESULTS AND DISCUSSION	70
4.1 Study Of The Decay Of 115gCd and 115mCd to 115 In	70
The same of the procedure and Results	
Discussion for the Decay U1 Cum	75
4.1.2 Analysis and Discussion for The Decay of 115mCd	89
4.1.2 Analysis and Discussion for The Decay of 115mCd	102
a per a matical Discussion	104
1.1 Fundamental Parameters for Calculations	
4.1.2 Positive Parity States	105
4.1.3 Negative Parity States	109
4.1.3 Negative Parity States	112
4.1.4 Spectroscopic Factor	115
References	113
Arabic Summary	

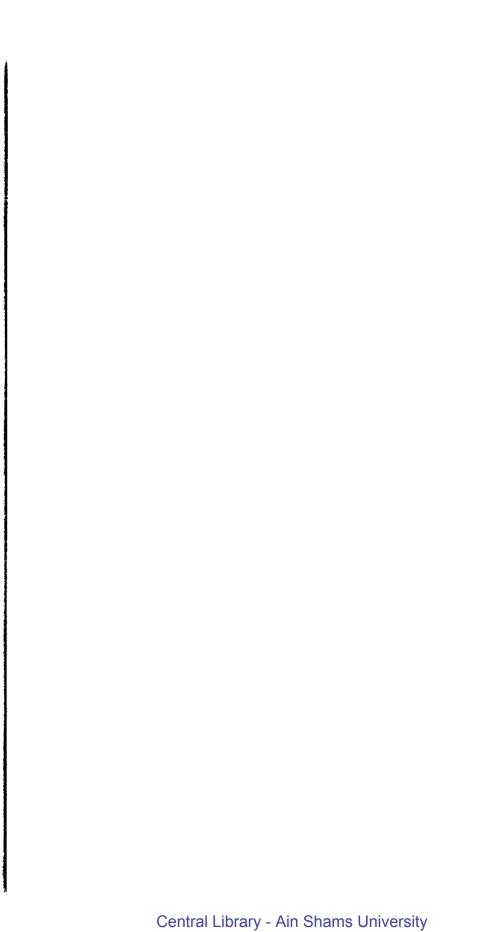
ABSTRACT

The decays of ^{115g}Cd and ^{115m}Cd were investigated using a HP Ge singles spectrometer and a HP Ge -NaI (T/) gammagamma coincidence spectrometer.

Thirty one gamma transitions were established and confirmed to belong to the ^{115m}Cd decay out of which three new transitions at 251.19, 270.79 and 590.52 KeV were observed for the first time and confirmed to belong to the decay of ^{115m}Cd to ¹¹⁵In.

Sixteen transitions were proved to belong to ^{115g}Cd decay of which 114.13 KeV gamma transition was observed for the first time, and a new position was proposed for the 251.19 KeV transition.


The absolute reduced transition probability for the 941.24 KeV, $B(E2) = 0.51 \times 10^{-2} \, e^2 \, b^2$, was calculated to give an intrinsic quadrupole moment of 0. 5061 b., This was used to give an approximate value, for the deformation parameter β , of 0.0348, which is characteristic for nearly spherical nuclei, and is explained by Weisskopf unit which gives a value of B_w (EL) = 0.5537 b.


The relative and total intensities for the gamma-ray transitions have been calculated and from the relative intensity imbalances the β -decay branching ratios were calculated, The log ft-values were determined using the Moszowski nomograms with a slightly expanded version.

A theoretical interpretation of ¹¹⁵In excited states is given using the weak coupling model.

The core ¹¹⁶Sn was assumed to be deformed such that the single hole could occupy three different single hole states, for both the positive and negative parity states. This configuration is done for the first time in discussing the level structure of ¹¹⁵In

The expected theoretical level scheme is in very good agreement with the present experimental level scheme. The spectroscopic factors were also calculated.

