
INTERLEUKIN I IN NEONATES

THESIS

Submitted for the partial fulfilment of the

MASTER DEGREE IN PEDIATRICS

By

AZZA MOHAMED IBRAHIM

(M.B., B.Ch.)

Supervisors

DR. NANCY ABD EL AZIZ SOLIMAN

Assistant Professor of Pediatrics
Faculty of Medicine – Ain Shams University

DR. TAGHREED HAMED EL KHASHAAB

Assistant Professor of Microbiology and Immunology Faculty of Medicine – Ain Shams University

DR. MOHAMED NASR EL DIN EL BARBARY

Lecturer of Pediatrics
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 1994

بسم الله الرحمن الرحيم

« قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم »

صدق الله العظيم (سورة البقرة أية ٣٢)

To ...

My family and my husband.

ACKNOWLEDEGMENTS

I wish to express my deepest gratitude to DR. NANCY ABD EL-AZIZ SOLIMAN, Assistant Professor of Pediatrics, Ain Shams University, for suggesting this study and for her continuous encouragement throughout this study, for without her support this study could not have been carried out.

I am grateful to DR. TAGHREED HAMED EL-KHASHAAB, Assistant Professor of Microbiology and Immunology, Ain Shams University, for supplying help and for her remarkable effort and encouragement during the work of this thesis.

I also extend my thanks to DR. MOHAMMED NASR EL DIN EL-BARBARY, Lecturer of Pediatrics, Ain Shams University, for his continuous guidance and repeated revision of every item in this thesis.

I would like to thank all dear colleagues and nursing staff in NICU and Obstetric Ward, Ain Shams University and also to all members of Immunogenetic Laboratory, Ain Shams Specialized Hospital, for without their help this work would not have been accomplished.

To all the members of my family I am so grateful for their great support and help.

CONTENTS

	Page
Introduction	1
Aim of the Work	3
Review of Literature	4
Infection in the Newborn	4
Neonatal Immunity	25
Cytokines	30
Interleukin-1	47
Subjects and Methods	60
Results	68
Discussion	80
Summary and Conclusion	87
References	89

LIST OF TABLES

		Page
Table (1):	Patterns of neonatal sepsis.	9
Table (2):	Non-specific clinical manifestation of sepsis in the newborn infant.	20
Table (3):	Defense mechanism of the newborn infant.	25
Table (4):	The principle effect of the different types of lymphokines.	31
Table (5):	Physical properties.	32
Table (6):	Classification of IL-1.	53
Table (7):	Target cells and actions of IL-1 and related substances.	60
Table (8):	Group 1: Control	69
Table (9):	Group 2: Preterms.	70
Table (10):	Group 3: Full terms.	71
Table (11):	Mann-Whitney U for Interleukin I.	73
Table (12):	Mann-Whitney U for Interleukin I.	74
Table (13):	Mann-Whitney U for Interleukin I.	74
Table (14):	Mann-Whitney U for Interleukin I.	75
Table (15):	Mann-Whitney U for Interleukin I.	75
Table (16):	Mann-Whitney U for Interleukin I.	77
Table (17):	Mann-Whitney U for Interleukin I.	77
Table (18):	Birthweight (gm) interleukin 1.	79
Table (19):	Gestational (weeks) interleukin 1.	79
Table (20):	Total bilirubin, interleukin 1.	79

LIST OF FIGURES

		Page
Fig. (1):	Model of CTL activation and the role of cytokines.	35
Fig. (2):	Molecular effectors of rejection.	46
Fig. (3):	Median Interleukin I levels	72
Fig. (4):	Effect of sex on median Interleukin I levels	76
Fig. (5):	Effect of exchange transfusion on median Interleukin I levels	78
Fig. (6):	Correlation between birth weight and Interleukin I levels	80

ABBREVIATIONS

AIDS Acquired immunodeficiency syndrome

BAF B cell activating factor

BCGF B cell growth factor
CSF Cerebrospinal fluid

CSF Colony stimulating factor

CTL Cytotoxic T lymphocytes

DTH Delayed type of hypersensitivity

GBS Group beta-hemolytic streptococci

GM-CSF Granulocyte-macrophage, stimulating factor

HRP Horseradish peroxidase

IEF Isoelectrofocusing
IgE Immunoglobulin E
IgG Immunoglobulin G

IL Interleukins

IL1α Interleukin 1 alphaIL1β Interleukin 1 beta

 $\begin{array}{ll} \text{INF} & \text{Interferon} \\ \text{INF}\beta_2 & \text{Interferon } \beta \\ \text{INF}\gamma & \text{Interferon } \gamma \end{array}$

Kd Kilodaltons

LAF Leukocyte activating factor

LAK Lymphokine activated killer cells

LBW Low birth weight

LGL Large granular lymphocytes

LPS Lipopolysaccharide

MDP Muramyl dipeptide

MHC Major histocompatibility complex

NICU Neonatal intensive care unit

NK Natural killer cell

PAF Platelet activating factor

PCL Precursor cytotoxic lymphocytes

PGE₂ Prostaglandin E₂

PHA Phytohemagglutinin

PMA Phorbol myristate acetate

SD Standard deviation

Th T-helper cell

TMP Tetramethyl benzidine

TORCH Toxoplasmosis, rubella, cytomegalovirus, herpes

V. LBW Very low birth weight

WBC White blood cells

Introduction

INTRODUCTION

Production of interleukin 1 (IL-1) by activated macrophage augments T cell participation in antigen recognition and thereby help to initiate B cell transformation to antibody (*James*, 1990).

Molecular characteristics of interleukin 1 (IL-1) cDNA for the predominant form of interleukin 1 (IL-1) has been recently cloned from human peripheral blood monocytes (*Auron et al.*, 1984).

The protein consists of 269 amino acids with no obvious signal or cleavage peptide sequence (Van Damm et al., 1986).

Interleukin 1 (IL-1) is induced by a wide variety of microbial products (lipopolysaccharide antigen) (*Dinarello and Woff*, 1982), endogenous host products, C5a, bile salts, inflammatory steroids, epinephrine, progesterone (*Dillard and Bodel*, 1970; *Flyn*, 1984; *Cannon and Dinarello*, 1986) and environmental factors (ultraviolet radiation) (*Gahring et al.*, 1984).

When interleukin 1 (IL-1) mediated mechanisms occur in an infectious challenge, they represent beneficial adaptation. In excess they become pathological conditions themselves (*Fontana*, 1982).

Tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 are thought to be involved in the pathogenesis of sepsis with Gramnegative bacteria (*Martens Van Raan et al.*, 1993).

Reduced secretion of interleukin 1 by neonatal monocytes. Monocytes isolated from peripheral blood of preterm and term newborn infants data provide evidence that neonatal monocytes have a profoundly impaired cytokine secretion (*Peters et al.*, 1993).

Inappropriate local secretion of interleukin 1 (IL-1) in pathogenesis of rheumatoid arthritis (*Fontana*, 1982) and has been implicated in vasculitis and fibrosis (*Dinarello*, 1985).

Protein malnourished patients are immunocompromised by an inability to produce interleukin 1 (IL-1) the problem can be corrected by dietary intervention (*Holfman Goetz et al.*, 1981).

Aim of the Work

AIM OF THE WORK

The aim of this work is to study the level of interleukin 1: "IL-1" in sick versus normal neonates so as to evaluate its role as an indicator of sepsis in the newborn.