
AN ATTEMPT TO PRODUCE RENNIN-ENZYME FROM STREPTOCOCCI

By

ASHRAF GAMIL ATTALLAH

A thesis submitted in partial fulfillment

o f

the requirements for the degree of

Master of Science

in

Agriculture

670.2899 A.G

(Microbiology)

49521

Department of Microbiology
Faculty of Agriculture
Ain Shams University

AN ATTEMPT TO PRODUCE RENNIN-ENZYME FROM STREPTOCOCCI

By

ASHRAF GAMIL ATTALLAH

A thesis submitted in partial fulfillment

of

the requirements for the degree of

Master of Science

in

Agriculture (Microbiology)

Department of Microbiology Faculty of Agriculture Ain Shams University

APPROVAL SHEET

AN ATTEMPT TO PRODUCE RENNIN-ENZYME FROM STREPTOCOCCI

By

Ashraf Gamil Attallah

B.Sc. in Agric. (Microbiology) Fac. of Agric. (1988) Ain Shams University

This Thesis for M.Sc. Degree has been

Approved by:

Prof. Dr. M.H. Hamouda

Prof. of Genetics, Faculty of Agric. Cairo University. M. H. Hamoda

Prof. Dr. A. Hazem

Prof. of Agric. Microbiology Faculty of Agric. Ain Shams University

Prof. Dr. Rawia F. Gamal

Prof. of Agric.Microbiology Faculty of Agric. Ain Shams University (Supervisor)

Date of Examination 3/8/1993

AN ATTEMPT TO PRODUCE RENNIN-ENZYME FROM STREPTOCOCCI

Ву

ASHRAF GAMIL ATTALLAH

B.Sc. Agric. (Microbiology Dept.) Ain shams University, (1988)

Under the Supervision of:

Prof. Dr. Rawia F. Gamal
Prof. of Agricultural Microbiology,

Froi. of Agricultural Microbiole Faculty of Agricultural, Ain Shams University.

Prof. Dr. M.M. Abd El-Hallm Prof. of Molecular Genetics, Microbial Genetics Dept., National Research Center

Abstract

Different Escherichia coli and Streptococcus lactis rennin-producer transformants were obtained when buffalo brain, cow brain, buffalo maw or Bacillus cereus DNAs were used. Different genetic stability and rennin activity were found. Rennin gene was located at recipient chromosome.

Key words:

Streptococci Rennin-enzyme.

ACKNOWLEDGEMENT

The researcher is very grateful and greatly indebted to Prof. Dr. Rawia F. Gamal Professor of Agricultural Microbiology; Faculty of Agriculture, Ain Shams University, and Prof. Dr. M. M. Abd El-Hallm, Professor of Molecular Genetics, Microbial Genetics Dept., Genetic Engineering and Biotechnology, National Research Center, for suggesting the problem, kind supervision, great help and preparation of the manuscript.

The researcher wishes to express his sincere thanks to Dr. Wedad El-Tohamy Eweda, Associated Prof. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University for her interest and Dr. M. S. Abd El-Salam, associated Prof. of Gene Technology, Microbial Genetics Dept., Genetic Engineering and Biotechnology Div. NRC for his kind advice and help in supervision.

Thanks are also due to **Dr. Hemmat M. M. Abdel-Hady,**Lecturer of Agricultural Microbiology, Faculty of Agriculture, Ain Shams
University.

Many Thanks and appreciation to all members of the Department of Microbiology, Fac. of Agric., Ain Shams university and all members of Microbial Genetics Dept. National Research Center.

CONTENTS

	Page
LIST OF TABLES	
LIST OF FIGURES	
INTRODUCTION	1
REVIEW OF LITERATURE	
1. Rennin and microbial rennin-like-enzyme	3
2. Rennin-gene	. 8
3. DNA isolation and purification	12
4. Bacterial plasmids	18
5. Bacterial transformation	. 22
MATERIALS AND METHODS	27
MATERIALS	27
a. Bacterial strain used	27
b. Animal tissues	27
c. Media used	28
. METHODS	. 30
1. Isolation of streptococcus antibiotic resistant strains	30
2. DNA isolation	31
a. From animal tissues	31
b. From bactrial cells	32
Buffers and reagents	33
3. Determination of DNA concentration and purity	33
4. Plasmid isolation	3 4
5. DNA manipulation	35
5.1. DNA fragmentation	35
5.2. Agarose gel-electrophoresis	35
a. Procedure	
b. Buffers and reagents	36

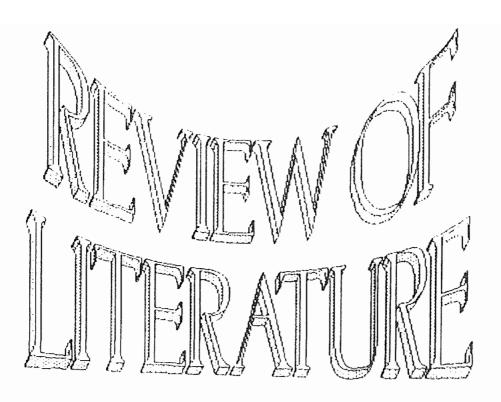
	Page
6. Bacterial transformation	3 (,
a. Buffers and reagents	37
b. Induction of competent S. luctis	38
c. Induction of competent E. coli	39
d. S. lactis and E. coli transformation	39
7. Isolation of rennin-producer transformants	40
8. Plasmid curing	41
9. Rennin-enzyme extraction	41
10. Determination of rennin-activity	43
a. Milk-clotting technique	43
b. Casein-agar gel diffusion technique	43
11. Growth curve of the tested bacteria	43
RESULTS AND DISCUSSION	45
1. Isolation of streptococcus antibiotic resistant strains	45
2. DNA fragmentation	47
3. E. coli rennin-producer transformants	49
4. Streptococcus rennin-producer transformants	52
5. Transformation stability	57
6. S. lactis A1-retransformants for rennin-production	61
7. Location of rennin-gene	61
8. Rennin-gene activity	66
9. Effect of acidification on enzyme activity	70
10. The growth parameters of the tested strain	72
- SUMMARY	78
- REFERENCES	82
- ARABIC SUMMARY	

LIST OF TABLES

	Page
1. Bacterial strain used	27
2. Spontaneous antibiotic resistant strains of S. lactis and	
S. thermophilus.	45
3. E. coli rennin-producer transformants	51
4. S. lactis rennin and rennin-like producer transformant	55
5. Rennin and rennin-like producer transformants genetic	
stability	58
6. S. lactis A1-retransformants for rennin production	62
7. Transformants rennin and rennin-like diffusion behaviour	
on casein-agar gel plate.	67
8. Effect of acidification on enzyme activity	73
9. Specific growth rate (μ), hourly growth rate (HGR), doubling	
time (td), number of generation (N), Multiplication rate	
(MR) and yield expected of S. lactis A1, S. lactis A1-B3 and S.	
lactis A1-6.	74

LIST OF FIGURES

	Page
Fig. (1): Electrophotogram of mechanically sheard DNA	48
Fig. (2): Detection of rennin-enzyme on casein-agar	54
Fig. (3): Plate detection method for rennin and rennin-like production	60
Fig. (4): Detection of plasmid loss by lactose fermenter on Tetraze medium supplemented with lactose.	olium 64
Fig. (5): Agarose-gel electrophoresis of DNA content in S. lactis Al and cured S. lactis Al-6	65
Fig. (6): Detection behaviour of the recipient (a) S. lactis A1, and the two rennin producer, (b) S. lactis A1-4, (c) S. lactis A1-6 and (d) S. lactis A1-B3 culture-supernatant on casein-agar plate.	68
Fig. (7): Milk-clotting activity	. 71
Fig. (8): Growth curve of S. lactis A1 , S. lactis A1-6 D D and S. lactis A1-B3 oo .	. 75


INTRODUCTION

Call rennet, a crude extract of gastric enzyme containing 85 to 95% chymosin and 10 to 15% bovine pepsin (Hicks, et al., 1988) has been the traditional and preferred milk-clotting enzyme preparation for cheese making. Between 1962 and 1972, world cheese production was more than doubled, causing calf stomach, the raw material from which calf rennet is extracted, to become scarce. As a result, the price of calf rennet raised to over \$ 65/gal (Nelson, 1979). Research was directed toward finding suitable substitutes for calf rennet, patents have been issued for the production of milk-clotting enzymes from some bacteria and Fungi. These enzymes have been approved from manufacturing all standard varieties of cheese. Recent developments in genetic engineering technology provided recombination chymosin as another alternative to the shortage of calf rennet. Contrary to commercial calf rennet, recombinant chymosin contains only the protein resulting from the expression of one gene sequence, so it contains only a single variant (Hicks et al., 1988).

Due to the increasing production of cheese several million tons, world wide, and a decline in the number of slaughtered calves, intensive research has been underway since 1960th to develop enzymatic product of microbial origin; calf rennet substituent or

rennin-like enzymes.

Therefore, this investigation is an attempt to obtain rennin enzyme streptococci producers. *S. lactis* was used as a target host, while cow and buffalo calf different tissues were used as rennin gene donors in addition to *B. cereus* which used as a donor for rennin-like gene.

REVIEW OF LITERATURE

1. Rennin and microbial rennin like-enzyme:

Chymosin (EC.3.4.23.4), also known as rennin or chymase is the major proteolytic enzyme constituent of the rennet, an extract from the fourth stomach of 3 to 4 weeks old calves which have been raised on milk (Foltmann, 1970). Rennin is initially formed as pre-prochymosin which consist of pro-chymosin (PC), i.e., pro-rennin or the zymogen with 16 amino acids signal peptide at it's amino terminal end. Calf chymosin is secreted as inactive precursor, pro-chymosin (PC), consisting of single peptide chain with 365 amino acids residues it's molecular weight is 40,777 daltons. Prochymosin irreversably converted into active enzyme (rennin), i.e., 323 amino-acids it's molecular weight is 35, 652 daltons and is essential for desired enzymatic curdling, by limited proteolysis during which a total of 42 amino-acids residues are released from the amino-terminal part of the peptide chain (Pederson, Foltmann, 1975 and Pederson et al., 1979.

Farah and Bachmann (1987) stated that, variation of rennet action was found to be associated with milk kind diversity in terms of coagulation time. Cow milk coagulation was 2-3 times faster than that of camel milk. With both camel and cow milk, cogulation time was reduced with decreasing pH, increasing temperature and adding Ca⁺⁺. Isolation of chymosin from it's natural source, rennet, actually yields a mixture of prochymosin and chymosin each existing as two types called

-11/2