# PURIFICATION AND CHARACTERIZATION OF HYALURONIDASE FROM CERASTES CERASTES VENOM

#### THESIS

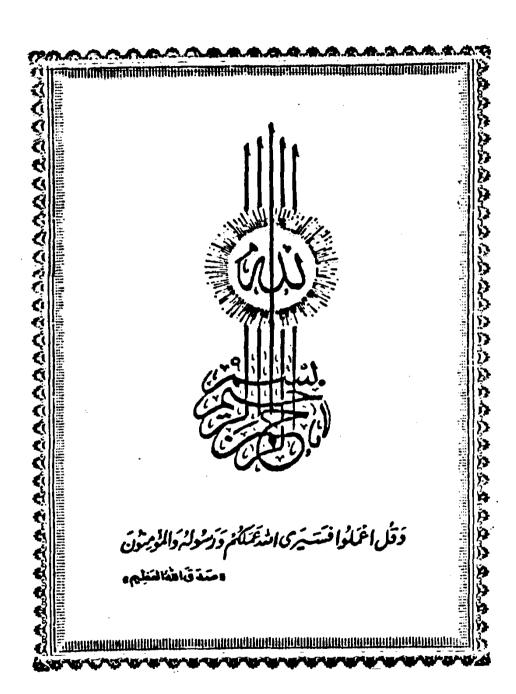
Submitted in Partial Fulfilment for the Master Degree in Biochemistry



 $\mathbf{p}$ 

# HAB MOHAMED HELMY MAHMOUD

M. B.; B. Ch.


Supervisor

### Prof. Dr. FATHY MOHAMED TASH

Professor of Biochemistry
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University

1985





# DÉDICÁTED TO MY FATHER & MOTHER

This research project is carried out under grant No. 840505 by the Foreign Relation Coordination unit of the Supreme Council of Universities.

## ACKNOWLEDGMENT

I would like to express may deepest gratitude to my advisor Dr. Mohamed Farid El-Asmar, Professor of Biochemistry, Faculty of medicine, Ain Shams University, for his technical assistance, guidance and generous help.

I want to express my gratitude and thanks to Dr. Fathy Tash, Prof. of Biochemistry, for his supervision, guidance, and true cooperation, and to Dr. Emtiaz Shaaban, and Dr. Rashwan Farag for their supervision and actual readiness to help.

My sincere gratitude and thanks are also extended to my professor, Dr. Salah El-Din Zaky Eid, Head of Biochemistry department, Faculty of medicine, Ain Shams University, for his encouragement and support.

Finally thanks to all my colleagues in Biochemistry department for being cooperative and helpful.

|    | CONTENTS                                             | Page |
|----|------------------------------------------------------|------|
| ι. | AIM OF THE WORK                                      | 1    |
| 2. |                                                      | 3    |
|    | * Classification and distribution of venomous snakes |      |
|    | in the world                                         | 6    |
| 3  | * General composition of snake venoms                | 10   |
|    | * The protein component in snake venoms              | 14   |
| •  | * Distribution of venoms in the body of snakebite    |      |
|    | victims                                              | 15   |
|    | * Enzymes in snake venoms                            | 18   |
|    | * Biological value of enzymes in snake venoms in     |      |
|    | biochemical research                                 | 19   |
|    | * Hyaluronidases                                     | 22   |
|    | * Mammalian sources of hyaluronidase enzyme          | 23   |
|    | * Hyaluronidases in venoms                           | 24   |
|    | * Classification of hyaluronidases                   | 27   |
|    | * Purification and characterization of testicular    |      |
|    | hyaluronidase                                        | 30   |
|    | * Lysosomal hyaluronidases                           | 31   |
|    | * Properties of different hyaluronidases             | 35   |
|    | * Kinetics of hyaluronidases                         | 37   |
|    | * Biological significance of hyaluronidases          | 38   |

|    |                                                     | Page |  |  |  |
|----|-----------------------------------------------------|------|--|--|--|
|    | * Different hyaluronidase substrates                | 40   |  |  |  |
|    | * Different methods for assay of hyaluronidase      |      |  |  |  |
|    | activity                                            | 44   |  |  |  |
|    | * Gel Filteration chromatography                    | 47   |  |  |  |
| з. | MATERIALS & METHODS                                 | 53   |  |  |  |
|    | * The crude venom                                   | 53   |  |  |  |
|    | * Purification procedure for hyaluronidase          | 54   |  |  |  |
|    | * Protein determination                             | 57   |  |  |  |
| •  | * Preparation of standard curve for protein         |      |  |  |  |
|    | estimation                                          | 59   |  |  |  |
|    | * Estimation of the protein content in the crude    |      |  |  |  |
|    | venom                                               | 60   |  |  |  |
|    | * Assay of hyaluronidase activity                   | 61   |  |  |  |
|    | * Assay of hyaluronidase activity in the crude ven  |      |  |  |  |
|    | * Effect of enzyme concentration on enzyme activity | 66   |  |  |  |
|    | * Effect of pH on hyaluronidase activity            | 67   |  |  |  |
|    | * Effect of temperature on enzyme activity          | 70   |  |  |  |
|    | * Effect of substrate conc. on enzyme activity      | 71   |  |  |  |
|    | * Effect of some cations on enzyme activity         | 72   |  |  |  |
|    | * Effect of different anions on enzyme activity     | 73   |  |  |  |
|    | * Effect of EDTA, DME and Iodoacetamide on enzyme   |      |  |  |  |
|    | activity                                            | 74   |  |  |  |
| 4. | RESULTS                                             | 75   |  |  |  |
| 5. |                                                     | 105  |  |  |  |
|    |                                                     | 116  |  |  |  |
| 7. | REFERENCES                                          | 118  |  |  |  |
|    | ARABIC SUMMARY.                                     |      |  |  |  |

## \* LIST OF TABLES \*

|       |      |                                           | Page       |
|-------|------|-------------------------------------------|------------|
| Table | (1): | Protein content in the crude venom        | 77         |
| Table | (2): | Hyaluronidase activity in the crude       |            |
|       |      | venom                                     | 80         |
| Table | (3): | Hyaluronidase activity in the pooled      |            |
|       |      | active fraction                           | 84         |
| Table | (4): | PUrification profile for hyaluronidase    |            |
|       |      | enzyme                                    | 85         |
| Table | (5): | Effect of metal ions on enzyme activity   | <b>9</b> 8 |
| Table | (6): | Effect of some anions on enzyme activity. | 101        |
| Table | (7): | Effect of EDTA, iodoacetamide and         |            |
|       |      | dimercaptoethanol on enzyme activity      | 104        |

#### \* LIST OF FIGURES\*

|      |       |                                             | Page       |
|------|-------|---------------------------------------------|------------|
| Fig. | (1):  | A standard curve for protein estimation by  |            |
|      |       | lowry's method                              | 76         |
| Fig. | (2):  | Standard curve for the turbidity of sodium  |            |
|      |       | hyaluronate after adding cetyltrimethyl     |            |
|      |       | ammonium bromide                            | 79         |
| Fig. | (3):  | Elution pattern of crude Cerastes cerastes  |            |
|      |       | venom on sephadex G-100(Fine) column        | 83         |
| Fig. | (4):  | Effect of enzyme concentration on enzyme    |            |
|      |       | activity                                    | 8 <b>7</b> |
| Fig. | (5):  | Effect pH on enzyme activity                | -89        |
| Fig. | (6):  | Effect of temperature on enzyme activity    | 91         |
| Fig. | (7):  | Effect of substrate concentration on enzyme |            |
|      |       | activity                                    | 93         |
| Fig. | (8):  | Double reciprocal Lineweaver-Burk plot of   |            |
|      |       | 1/v versus 1/ <b>\$</b>                     | 95         |
| Fig. | (9):  | Effect of some cations on the enzyme acti-  |            |
|      |       | vity                                        | 97         |
| Fig. | (10): | Effect of some anions on enzyme activity    | 100        |
| Fig. | (11): | Effect of NaEDTA, dimercaptoethanol and     |            |
|      |       | Iodoacetamide on enzyme activity            | 103        |
|      |       |                                             |            |

# AIM OF THE WORK

#### Aim of the work

Snake venoms are complex and concentrated mixtures of many enzymes and substances of marked biological concern

The understanding of the net effect of envenomation on the body of bittin victim requires a complete idea about the effect and role of each component separetly. And hence the need for fractionation, purification and characterization of the different venom constituents.

The hyaluronidase enzyme was well known to occur in the majority of snake venom families. It has been implicated in the diffusion of the injected venom into and through tissues, but it has never been shown to definitely participate in this action.

Our task in such a study is to purify the hyaluronidase enzyme from one of Egyptian vipers venom, which is the <u>Cerastes</u> cerastes snake venom.

Characterization of both physical and kinetic behaviour of the enzyme will be explored.

Effect of temperature, pH, metal and non metal ions on it's activity will be attempted.

Calculation of its Michaelis constant  $(K_m)$ . for its preferable substrate, hyaluronic acid, is of great value for its characterization.

# INTRODUCTION

## GENERAL INTRODUCTION

In ancient civilization, the snake embodied the spirit of the earth. At this time, the snake was the attribute of all cosmogonies.

Snakes represented the spirit of air and earth and was the symbol of health, Knowledge, life, and fecundity.

Aaron, the brother of Moses, turned rods into snakes, and † placed a bronze snake on a staff, anyone who was the victim of snake poisoning was saved when he saw this symbol.

Jung (1964) told the curious story of the chemist

Kekule who, in the 19th century, came to define the molecular structure of benzene, influenced by the memory of
ancient symbols, he was dreaming one night of a snake
holding it's tail in it's mouth and on awakening from his
dream, related the circular shape of the snake to the cyclic
structure of benzene.

The "ouroboros" of Africa is a snake which bites its own tail off since it fertilizes itself it is considered a "Source of life"Being venomous, it is also a "Source of death" so the "Ouroboros" is an expression of the idea of life and death at the same time (CHEVALIER, 1973).

In the 16th century, Van Helmont proposed his phlogistic theory, that snake venoms are "irritated spirits" which were "so cold" that they coagulated the blood in the veins and arrested the circulation.