HISTOPATHOLOGICAL EFFECT OF INJECTABLE HYALURONIC ACID AS FILLER MATERIAL IN RAT'S LIP.

(EXPERIMENTAL STUDY)

Thesis

Submitted to Faculty of Oral and Dental Medicine, Cairo University, in Partial Fulfillment of the requirements for the Degree of Master in Basic Dental Sciences

(Oral and Maxillofacial Pathology)

By

LEENA ALI MOHAMED ALAROOMY

B.D.S (Ibb University, Yemen 2007)

Faculty of Oral and Dental Medicine
Cairo University

2017

SUPERVISORS

Dr. Sawsan Naguib AbdelBary

Professor of Oral and Maxillofacial Pathology Faculty of Oral and Dental Medicine Cairo University

Dr. Dalia Hussein El-Rouby

Professor of Oral and Maxillofacial Pathology Faculty of Oral and Dental Medicine Cairo University

Judgment committee

Dr. Ehab Saeed Adbdelhamid

Professor of Oral and Maxillofacial Pathology
Faculty of Oral and Dental Medicine
Ein Shams University

Dr. Loloa Mohamed Fathi

Professor of Oral and Maxillofacial Pathology
Faculty of Oral and Dental Medicine
Cairo University

Dr.Sawsan Naguib AbdelBary

Professor of Oral and Maxillofacial Pathology
Faculty of Oral and Dental Medicine
Cairo University

Dr.Dalia Hussein El-Rouby

Professor of Oral and Maxillofacial Pathology
Faculty of Oral and Dental Medicine
Cairo University

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my supervisors, Professor Dr.Sawsan Naguib AbdelBary for her scientific supervision and guidance, constant encouragement and motivation to always do better.

My deepest thanks and appreciation are extended to Professor Dr.Dalia Hussein El-Rouby for her valuable supervision and efforts during writing this thesis. One simply could not wish for better or friendlier supervisors.

My sincere thanks also goes to Professor Dr.Mona Wali, head of Oral & Maxillofacial Pathology Department for her kindness and endless support.

My sincere thanks to all staff members of Oral & Maxillofacial Pathology Department, Faculty of Oral and Dental Medicine, Cairo University for their support and kindness.

Special thanks to my beloved husband for his endless support I couldn't have done it without you, you simply mean the world to me.

I would like to thank my father, my mother, my brother and my sisters for their endless support in every step of my life.

CONTENTS

Title	Page
List of Abbreviations.	I
List of Figures.	II
List of Tables.	VI
INTRODUCTION.	1
REVIEW OF LITERATURE	3
1.Hyaluronic acid (History)	3
1.1.Structure	3
1.2.Synthesis & Degradation.	5
1.3.Metabolism &Turnover.	7
1.4.Distribution And Function.	9
1.4.1.In the ECM	9
1.4.2.In the Skin.	11
1.4.3.In the Oral Tissues	12
1.4.4.In Synovial Joints.	13
1.4.5.In the Eyes	14
1.5.Medical Applications.	15
1.5.1.Orthopaedic Applications.	15
1.5.2.Surgical Applications	15
1.5.3.Dental Applications.	16
1.5.4.Tissue Engineering Applications.	17
1.5.5.Cosmetic and Soft Tissue Augmentation.	19
2.Hyaluronic Acid Fillers.	22
2.1.The Production Process.	24
3.The Biology of Facial Fillers	26
4.HA Filler Complications.	27
5 Histological Features of The Implant Site	33

6.Cluster of differentiation (CD68) and its role in detection of macrophages	35
AIM OF THE STUDY	37
MATERIAL AND METHODS.	39
1.Materials	39
1.1.Experimental animals.	39
1.2. Hyaluronic acid gel	39
1.3.Masson'sTrichrome.	41
1.4.Toluidine Blue	41
1.5.CD68 antibody	41
2.Methods.	41
2.1.Steps of the Procedure	43
2.2.Histopathological Examination.	45
2.2.1.Hematoxylin and Eosin (H&E) Stain.	45
2.2.2.Histochemical Stain.	45
2.2.3.Immunohistochemical Stain.	47
3.Computer Image Analysis	51
RESULTS	53
1. Histopathological findings	53
1.1.Hematoxylin and Eosin (H&E) Stain.	53
1.2.Masson's Trichrome Stain.	62
1.3.Toluidine Blue Stain.	70
1.4. CD68 antibody	74
2. Statistical analysis.	82
DISCUSSION	92
SUMMARY	108
CONCLUSIONS	111
REFERENCES	112
ARABIC SUMMARY	1

LIST OF ABBREVIATIONS

BDDE	1,4-Butanediol Diglycidyl Ether
BMP-2	Bone Morphogenic Protein-2
ECM	Extra Cellular Matrix
FDA	Food And Drug Administration
GAGs	Glycosaminoglycans
GFs	Growth Factors
GFS	Growth Factors
GMCSF	Granulocyte-Macrophage Colony-Stimulating Factor
НА	Hyaluronic Acid
HMW	High Molecular Weight
ICAM	Inter Cellular Adhesion Molecule
Ig	Immunoglobulin
Lamp	Lysosomal-Associated Membrane Protein
LDL	Low-Density Lipoprotein
LMW	Low Molecular Weight
MMPs	Matrix Metalloproteinases
NASHA	Non-Animal-Stabilized Hyaluronic Acid
PDGF-B	Platelet-Derived Growth Factor Beta
PG	Prostaglandin
PMNs	Polymorphonuclear Leukocytes
RHAMM	Receptor For Hyaluronan Mediated Motility
ROS	Reactive Oxygen Species
	Transforming Growth Factor-B
TGF- β TNF	Tumor Necrosis Factor
T LR	Toll Like Receptor

LIST OF FIGURES

Figure	Description	Page Number
Fig.1.	Diagrammatic representation of Chemical structure of hyaluronic acid	4
Fig.2.	Diagrammatic representation of HA gel	25
Fig.3.	A photograph of hyaluronic acid gel injectable dermal filler	40
Fig.4.	A photograph of disposable syringe with two sterilized needles	40
Fig.5.	A photograph showing intraperitoneal anaesthesia of a rat	44
Fig.6.	A photograph showing rat injected with HA filler in the lower border of lip	44
Fig.7.	A photograph of the image analyzer computer system	52
Fig.8.	A photomicrograph showing the collagen fiber by a blue binary color	52
Fig.9.	Photomicrograph of rat's lip in group I A, showing dense fibrous connective tissue consisting of fibroblasts, sporadic inflammatory cells and mucous glands (x200)	55
Fig.10.	Photomicrograph of rat's lip in group I A, showing details of cellular elements (x400)	55
Fig.11.	Photomicrograph of skin side of rat's lip in group IA, showing dense, poorly vascular connective tissue (x100)	56
Fig.12.	Photomicrograph of mucous side of rat's lip in group I B, showing epithelium, irregular epithelial ridges. The connective tissue shows few inflammatory cells (x100)	56
Fig.13	Photomicrograph of rat's lip in group I C, showing fibroblasts, few scattered inflammatory cells (x200)	57
Fig.14.	Photomicrograph of mucous side of rat's lip in group IIA, showing looseness and separation between the collagen fibers, variable amount of subepithelial edema & numerous variable sized blood vessels engorged with RBCs (x100)	58
Fig.15.	Photomicrograph of rat's lip in group IIA, showing loose, disorganized fibrous connective tissue, inflammatory cells as well as ruptured blood vessels (x200)	58
Fig.16.	Photomicrograph of rat's lip in group IIA, showing an aggregation of chronic inflammatory cells within connective tissue & around the edematous space (x400)	59

Fig.17.	Photomicrograph of rat's lip in group II B, showing scattered inflammatory cells within the loosely textured connective tissue. Intercellular matrix spaces and edema separate the collagen fibers. Dilated thick-walled blood vessels engorged with RBCs are seen (x100)	59
Fig.18.	Photomicrograph of rat's lip in group II B, showing scattered inflammatory cells. Large, dilated, thick-walled blood vessels engorged with RBCs (x200)	60
Fig.19.	Photomicrograph of rat's lip in group II B, showing scattered inflammatory cells in the connective tissue and dilated, thickwalled blood vessel engorged with RBCs (x400)	60
Fig. 20.	Photomicrograph of rat's lip in group IIC, showing a cystic space surrounded by loose collagen fibers, few inflammatory cells and blood vessels (x100) (inset x400)	61
Fig.21.	Photomicrograph of mucous side of rat's lip in group I A, illustrating the connective tissue composed of fibroblasts aligned along the wavy collagen bundles (x100)	64
Fig.22.	Photomicrograph of mucous side of rat's lip in group IB, rat's lip showing fibroblasts aligned along the wavy collagen bundles (x200)	64
Fig.23.	Photomicrograph of mucous side of rat's lip in group IC, showing connective tissue containing wavy collagen fibers and small blood vessels (x200)	65
Fig.24.	Photomicrograph of rat's lip in group II A, showing cystic spaces surround by collagen fibers (x100)	65
Fig.25.	Photomicrograph of rat's lip in group IIA, showing disorganized collagen fibers around the dilated blood vessels (x400)	66
Fig.26.	Photomicrograph of rat's lip in group II A, showing collagen fibers arranged around the periphery of a cystic space (x100)	66
Fig.27.	Photomicrograph of rat's lip in group II B, showing organization of collagen fibers around the periphery of a cystic space(x100)	67
Fig.28.	Photomicrograph in group IIB, showing organized dense collagen fibers and numerous dilated thick-walled blood vessels engorged with RBCs (x200)	67
Fig.29.	Photomicrograph of rat's lip in group II B, showing collagen fiber bundles separated by edematous spaces. A large, dilated blood vessel is also seen within connective tissue (x400)	68
Fig.30.	Photomicrograph of rat's lip in group II C, showing a small edematous area surrounded by loosely arranged collagen fibers (x100)	68
Fig.31.	Photomicrograph of rat's lip in group II C, showing collagen fibers arranged within loose connective tissue (x200)	69

Fig.32.	Photomicrograph of mucous side of rat's lip in group I A, showing scattered mast cells within connective tissue (x200)(inset x400)	71
Fig.33.	Photomicrograph of rat's lip in group I B, showing few mast cells scattered within the connective tissue (x400)	71
Fig.34.	Photomicrograph of rat's lip in group IIA, showing granules of mast cells scattered within connective tissue (x400)	72
Fig.35.	Photomicrograph of rat's lip in group IIB, showing numerous mast cells infiltrating the edematous connective tissue (x200)	72
Fig.36.	Photomicrograph of rat's lip in group IIB, showing few mast cells scattered within connective tissue (red arrows) & around a cystic space (x400)	73
Fig.37.	Photomicrograph of rat's lip in group IIC, showing few mast cells scattered within connective tissue around cystic spaces (x200)	73
Fig.38.	Photomicrograph of rat's lip in group IA, showing few scattered macrophages within the connective tissue (anti CD68 x200)	76
Fig.39.	Photomicrograph of rat's lip rat in group IB, showing sporadic macrophages within the connective tissue (anti CD68 x200)	76
Fig.40.	Photomicrograph of another rat's lip in group IC, showing sporadic macrophages within the connective tissue (anti CD68 x400)	77
Fig.41.	Photomicrograph of rat's lip in group IIA, showing immunoexpression of CD68 in macrophages within the connective tissue (anti CD68 x200)	77
Fig.42.	Photomicrograph of rat's lip in group IIA, showing cytoplasmic CD68 immunostaining in macrophages infiltrating the connective tissue (anti CD68x400)	78
Fig.43.	Photomicrograph of rat's lip in group IIA, showing the granular nature of the cytoplasmic immunostaining of CD68 in macrophages (anti CD68 x400)	78
Fig.44.	Photomicrograph of rat's lip in group IIB, showing +ve immunoexpression of CD68 in the connective tissue (anti CD68x200)	79
Fig.45.	Photomicrograph of rat's lip in group IIB, showing macrophages of variable sizes infiltrating the connective tissue (anti CD68x400).	79
Fig.46.	Photomicrograph of another rat's lip in group IIB, showing numerous macrophages within the connective tissue (anti CD68x400)	80

Fig.47.	Photomicrograph of rat's lip of group IIC, showing cytoplasmic immunoexpression of CD68 in macrophages (anti CD68x400).	80
Fig.48.	Photomicrograph of another rat's lip in group IIC, showing few macrophages within the connective tissue (anti CD68x400).	81
Fig.49.	Column chart showing mean number of inflammatory cells/high power field in different groups	83
Fig.50.	Column chart showing mean number of blood vessels/ high power field in different groups	85
Fig.51.	Column chart showing mean number of mast cells/ high power field in different groups	87
Fig.52.	Column chart showing mean area percent of collagen fibers in different groups	89
Fig.53.	Column chart showing mean number of CD68 positive macrophages/ high power field in different groups	91

LIST OF TABLES

Table Number	Description	Page Number
Table.1.	The PICO design for the study	38
Table.2.	The study design and animal grouping	42
Table.3.	Mean number of inflammatory cells/ high power field in different groups and significance of the difference	83
Table.4.	Mean number of blood vessels/ high power field in different groups and significance of the difference	85
Table.5.	Mean number of mast cells/ high power field in different groups and significance of the difference	87
Table.6.	Area percent of collagen fibers in different groups and significance of the difference	89
Table.7.	Number of CD68 positive macrophages/ high power field in different groups and significance of the difference	91

INTRODUCTION

The influence of sun exposure, gravity, and years of facial muscle movements starts to appear as wrinkles on the skin. During the aging process, basic changes in the skin, soft tissue, and skeletal support of the face occur resulting in a breakdown of the tissues under the skin leaving lines or other facial defects (Fakhari & Berkland, 2013).

Dermal fillers can help fill in these lines and facial defects, temporarily restoring a smoother, more youthful looking appearance. Many dermal fillers have been used for reducing facial skin lines and wrinkles, and for providing lip augmentation. Hyaluronic acid is one of the most widely used dermal agents which has the properties of an ideal dermal filler (Farahani et al., 2012)

An ideal dermal filler should be temporary but long-lasting (months to a year or longer), having minimum side effects and no allergenic effect, easy to administer, having minimum pain or no pain upon injection, and a reasonable cost for both the physician and the patient (Fakhari & Berkland, 2013).

Hyaluronic acid (HA) is a naturally occurring biodegradable polymer with a variety of applications in medicine including scaffolding for tissue engineering, dermatological fillers and viscosupplementation for osteoarthritis treatment. HA is present in most connective tissues as well as, in body fluids such as synovial fluid and in the vitreous humor of the eye (Fakhari & Berkland, 2013).

HA plays a key role in regulating extracellular matrix (ECM) organization and metabolism by influencing cell migration, proliferation and differentiation. Thus, it is dynamically involved in a number of biological and pathological processes such as embryogenesis, inflammation, metastasis, tumour progression, tissue turnover and wound healing (Olczyk et al., 2008).

HA has features that make it an attractive substance for dermal filler use, such as its ability to bind to large amounts of water, its natural presence in the skin, and its low potential for adverse reactions (**Tezel & Fredrickson**, 2008).

Hyaluronic acid injection can be used as a dermal filler to improve the skin's contour and reduce depressions in the skin due to scars, injury or lines. Although Hyaluronic acid fillers are non-toxic and non-immunogenic, hypersensitivity and granulomatous foreign body reaction have been reported (Farahani et al., 2012).