Rule of DWI MRI in characterization of enlarged cervical lymph node

Thesis

Submitted for partial fulfillment of master degree in Radiodiagnosis

By

Haider Saeed Shandal AL-Khafaji

Supervised by

Prof. Dr. Khaled Esmat Allam

Professor of Radiodignosis faculty of medicine Ain Shams University

Dr. Marwa El-Sayed Ebd Elrahman

Lecturer of Radiodiagnosis faculty of medicine Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgement

First of all I cannot give a word to fulfill my deepest thanks to" **ALLAH**, the most gracious and the most merciful for lighting me the way not only through this work but also throughout my whole life.

I would like to express my deep thanks and ever lasting gratitude to *Prof. Dr. Khaled Esmat Allam*, Professor of radiodignosis factuality of medicine, Ain Shams University, for his continuous scientific guidance, enriching me with his vast experience, unlimited help and supervision throughout the entire work.

I would also like to thank and express my extreme indebtedness to *Dr. Marwa El-Sayed Ebd Elrahman*,

Tecturer of radiodiagnosis factuality of medicine, Ain Shams

University, for her kind supervision, constant help and very generous cooperation.

Abstract

A lymph node or lymph gland, is an ovoid or kidney-shaped organ of the lymphatic system, and of the adaptive immune system, that is widely present throughout the body. They are linked by the lymphatic vessels as a part of the circulatory system. Lymph nodes are major sites of B and T lymphocytes, and other white blood cells. Lymph nodes are important for the proper functioning of the immune system, acting as filters for foreign particles and cancer cells.

Lymphadenopathy or adenopathy is disease of the lymph nodes which abnormal in they are in size. number. or consistency, lymphadenopathy of an inflammatory type (the most is lymphadenitis, producing swollen or common type) enlarged lymph nodes, infectious lymphadenitides affecting lymph nodes in the neck are often called scrofula

DWI is one of the evolving functional MR imaging when added and interpreted together with the conventional MR imaging, the specificity and accuracy of conventional MR imaging finding havw showen to be increased.

Keywords: Benign lymph node, malignant lymph node, diffusion weighted imaging

Tist of Contents

Title	Page No.
List of Figures	i
List of Tables	iii
List of Abbreviations	iv
Introduction	1
Aim of Work	4
Review of Litrature	
Chapter (1): Cervical lymph node	5
Chapter (2): Pathology	19
Chapter (3): Physics	40
Chapter (4): Manifestation	49
Patient and Method	56
Results	62
Discussion	93
Summary	101
Conclusion and Recommendation	104
References	106
Arabic Summary	

List of Figures

Fig. No.	Ti tle	Page No.
Figure (1):	Showing the normal structure of lymph node	8
Figure (2):	A: drawing show anatomy pertinent to node	al
cla	assification B: drawing show specific margin t	0.0
an	atomy seen	14
Figure (3):	Logitudenal US image of normal lymph node	15
Figure (4):	Logitudenal US Doppler image of reactive lymp	h
no	ode	16
Figure (5):	axial contrast enhanced CT scan of reactive lymp	h
nc	ode with hypodense hilum	17
•	showing the different stages of Hodgki	
ly	mphoma	24
0 ,	showing the Brownian motion	
. ,	showing the Brownian motion	
	Diffusion weights addition to MR spin ech	
	quence. Two gradient pulses	
	: Nodal echogenic hilum	
• ,	: Malignant node with multiple feeders and chaoti	
	tranodal vascular branching	
. ,	: 48-year-old woman with vascular invasion from	
-	uamous cell carcinoma	
- , ,	: Axial images showing a metastatic node	
`	4): 22-year-old man who presented with	
	sopharyngeal mass determined to be nasopharynge	
	reinoma.	
- , ,	Pie chart sex distribution of the study group	
	Pie chart finding MRI distribution	
. ,	: DWI distribution	
	Pie chart histopathology distribution	
0 ,	Pie chart ADC value distribution	
• , ,	: Pie chart lymphadenopathy distribution	
• ,	Bar chart between benign and malignant according	•
to	ADC value x10 ⁻³	69

Tist of Figures (Cont ..)

Fig. No.	Title	Page No.
Figure (22):	Bar chart between simple lymphaden	nitis and TB
lym	nphadenitis according to ADC value x1	10 ⁻³ 70
Figure (23):	Bar chart between metastatic and	lymphoma
acc	ording to ADC value x10 ⁻³	71
Figure (24):	Bar chart between non Hodgkin an	d Hodgkin
acc	ording to ADC value x10 ⁻³	72
Figure (25): 1	Bar chart between metastatic and TB ly	mphadenitis
acc	ording to ADC value x10 ⁻³	73
Figure (26):	ROC curve sensitivity and specificity	, diagnostic
Per	formance of ADC value x 10 ⁻³ in Discr	rimination of
ben	ign and malignant	74

Tist of Table

Table No.	Title	Page No.
-----------	-------	----------

Table (1): lymphatic drainage of the head and neck and	
associated sites of primary tumors	29
Table (2): Demographic data distribution of the study group.	62
Table (3): Finding MRI distribution of the study group (n=50)	63
Table (4): DWI distribution of the study group (n=50)	64
Table (5): Histopathology distribution of the study group (n=50)	65
Table (6): ADC value x 10^{-3} distribution of the study group (n=50)	66
Table (7): Lymphadenopathy distribution of the study group (n=50)	67
Table (8): Comparison between benign and malignant according to	
ADC value x10 ⁻³	69
Table (9): Comparison between simple lymphadenitis and TB	
lymphadenitis according to ADC value x10 ⁻³	70
Table (10): Comparison between metastatic and lymphoma	
according to ADC value x10 ⁻³	71
Table (11): Comparison between non Hodgkin and Hodgkin	
according to ADC value x10 ⁻³	72
Table (12): Comparison between metastatic and TB lymphadenitis	
according to ADC value x10 ⁻³	73
Table (13): Diagnostic Performance of ADC value x 10 ⁻³ in	
Discrimination of benign and malignant.	74

List of abbreviation

Abbre. No.	Title	Page No.
ADC	Apparent diffusion coefficient	
AIDS	Auto immune deficiency virus	
ALL	Acute lymphocytic leukemia	
CLL	Chronic lymphocytic leukemia	
CRS	Congenital rubella syndrome	
CSD	Cat-scratch disease	
CT	computerized tomography	
DWI	Diffusion weighted image	
EBV	Epstein-Barr virus	
EPI	Echo planner imaging	
FDG	Fluorodeoxyglucose	
FNAC	Fine needle aspiration cytology	
FOV	Field of view	
FSE	Fast spin echo	
GE	Gradient Echo	
HCMV	Human Cytomegalo virus	
HIV	Human immune deficiency virus	
HL	Hodgkin's lymphoma	
HSV	Herpes Simplex virus	
LAP	Lymphadenopathy	

Tist of abbreviation (Cont..)

Abbre. No.	Title Page No.
LN	Lymph node
MR	Magnetic resonance
NHL	Non-Hodgkin's lymphoma
NPV	Negative predictive value
P.I	Pulsatility index
PET	Positron emission tomography
PPV	Positive predictive value
R.I	Resistivity index
ROC	Receiver operating characteristic
ROI	Region of interest
RS	Reed-Sternberg cells
SD	Standard deviation
SLL	Small lymphocytic lymphoma
SPECT	Single photon imaging computerized tomography
SPSS	Statistical Program for Social Science
SS	Single shot
STIR	Short time inversion recovery
TB	Tuberculosis
U/S	Ultrasound
USPIO	Ultra small super paramagnetic iron oxide
WHO	The World Health Organization

Introduction

Introduction

The detection of cervical nodes metastasis is very important for the prognosis and the treatment of head and neck tumors. Up to today parameters used by conventional imaging techniques are shape, size, extracapsular spread and an abnormal inner architecture. The size is certainly the most used criterion for the diagnosis, whereas the presence of central necrosis is the most reliable sign of malignity (*King AD et al., 2004*).

Conventional imaging, such as Ultrasound (US), computed tomography (CT) and magnetic resonance (MR) can be used in the detection of enlarged cervical nodes, depending upon the morphologic criteria of the lymph node including the maximum short axial diameter, presence of necrosis, loss of LN hilum, heterogeneous enhancement, and perinodal infiltration (*Holzapfel et al.*, 2009)

Metabolic imaging using single photon emission-CT (SPECT) and positron emission tomography (PET) can help in this differentiation but they are limited by low spatial resolution and variable physiological fluro-deoxyglucose (FDG) uptake in anatomical structures and inflammatory lymph nodes. Ultrasound guided fine needle aspiration

cytology (FNAC) is invasive with false negative results due to operator-dependency (Fukui et al., 2005).

Diffusion-weighted MRI (DWI) is a non-invasive functional technique which allows the characterization of tissues and lesions by difference in microstructure (*Harriet 2010; Ishikawaet al., 2004*).

The process based on the analysis of water motion as architectural changes in the water molecule movement will alter the apparent diffusion coefficient and the signal intensity in DWI and apparent diffusion coefficient maps (Woodhams et al., 2011).

Principles of Diffusion MRI & ADC calculation: Diffusion is a physical process that results from the thermally driven, random motion of water molecules (*Fukui et al.*, 2005).

In the malignant tissue the apparent diffution of water is decrease

In such an environment, water diffusion is said to be relatively "restricted."

By contrast, in cystic or necrotic tissues, the apparent diffusion of water protons is relatively "free." Thus, DW MR

Datroduction

imaging is unique in its ability to provide information that reflects tissue cellularity and the integrity of cellular membranes (*Bammer et al.*, 2003).

Extracranial application ofdiffusion-weighted magnetic resonance imaging (MRI) has gained increasing importance in recent years. As a result of technical advances, this new non-invasive functional technique has also been applied in head and neck radiology for several clinical indications. In cancer imaging, diffusion-weighted MRI can be performed for tumour detection and characterization, monitoring of treatment response well as differentiation of recurrence and post-therapeutic changes after radiotherapy. Even for lymph node staging promising results have been reported recently (Harriet 2010).

Aim of the Work