Microbiological Studies on the Production of Fungal Proteases

Thesis
Submitted for the Partial Fulfillment
of The Degree of Master of Science
In Microbiology

By

Sanaa Khamis Gomaa Said

(B.Sc.Microbiology-2003)

Supervised by

Prof. Dr.

Fawkia Mohamed EL-Beih Prof. of Microbiology Microbiology Department Faculty of Science Ain Shams University Prof. Dr.

Nadia Naim Ahmed
Prof. of Chemistry of
Natural and Microbial
Products
National Research Center

Dr.Adel Ahmed EL-Mahalawy
Assistant Prof. of Microbiology
Faculty of Science
Ain Shams University

Microbiology Department Faculty of Science Ain Shams University

2010

بسم الله الرحمن الرحيم (هالم سبحانك لا علم لنا إلا ما علمتنا انك أنت العليم الحكيم)

حدق الله العظيم

(سورة البقرة أية ٣٢)

This thesis has not been previously submitted for a degree at this or any other university and it is original work of the writer

Acknowledgment

I wish to express my sincere gratitude to **Prof. Dr. Fawkia Mohamed EL-Beih** Professor of

Microbiology, Faculty of Science, Ain Shams University

For her kind supervision, support and careful revision of the manuscript.

I am also indebted to **Prof. Dr. Nadia Naim**Ahmed Professor of Chemistry of Natural and Microbial

Products in National Research Center for suggesting the topic of this work, continuous encouragement.

I wish to express my sincere gratitude to **Dr.Adel**A. EL-Mahalawy Assistant Prof. of Microbiology,

Faculty of Science, Ain Shams University for his kind supervision in this work.

My deepest thanks are also extended to Dr. Mona S. Shafei Assistant Prof. of Chemistry of Natural and Microbial Products, National Research Center, for her personal supervision during the work.

Gratefulness and deepest thanks are extended to **Prof. Dr. Abdel – Mohsen Saber** Professor of Chemistry of Natural and Microbial Products in National Research Center for his skillful assistance during the application experiment.

Thanks are also extended to the colleagues of the department of Nature and Microbial Products in National Research Center for kind help and facilities provided.

Last but not least, I would like to thank my mother and my father for their dedication and patience all over the time needed to prepare & present this thesis.

Gratefulness and deepest thanks are extended to my husband for his support and patience all over the time needed to prepare & present this thesis.

Gratefulness and deepest thanks are extended to my brother for his continuous encouragement.

	CONTENTS	page
	List of Tables	
	List of Figures	
	List of abbreviations	
	Abstract	
1. INTRO	DUCTION	1
2. REVIE	W OF LITERATURES	
2.1.	History of proteases	3
2.2.	Classification of proteases	6
2.3.	Sources of proteases	7
2.4.	Applications of proteases	10
2.5.	Factors affecting the proteases production	14
2.6.	Properties of proteases	20
2.7.	Partial purification of proteases	24
2.8.	Immobilization of proteases	25
	3.MATERIALS AND METHODS	
3.1.	Materials	29
3.1.1.	Fungi	29
3.1.2.	Chemicals	29
3.2.	Methods	30
3.2.1.	Maintenance of fungi	30
3.2.2.	Preparation of inoculum.	30
3.2.3.	Detection of zeralenon toxin, aflatoxins and ochratoxins	30
3.2.4.	Proteases production media	33
3.2.5.	Cultivation methods	33
3.2.6.	Quantitative estimation of the biomass	33
3.2.7	Estimation of proteases activity	34
3.2.7.1.	Enzyme source	34
3.2.7.2.	Determination of the proteolytic activity	34
3.2.7.3	Determination of extracellular protein	35

	CONTENTS	page
3.2.8.	Partial purification of Aspergillus flavus proteases	35
3.2.8.1.	Fractional precipitation by ethanol	36
3.2.8.2.	Fractional precipitation by acetone	36
3.2.8.3.	Fractional precipitation by ammonium sulphate	37
3.2.9.	Immobilization of partially purified Aspergillus flavus	
	proteases	38
3.2.9.1.	Physical adsorption	38
3.2.9.2.	Ionic binding	38
3.2.9.3.	Entrapment	38
3.2.9.3.1.	On agar and agarose	38
3.2.10.	Properties of the free and immobilized extracellular	
	proteases	39
3.2.10.1.	Effect of pH on proteases activity	39
3.2.10.2	Effect of pH stability on proteases activity	39
3.2.10.3.	Effect of assayed temperature on proteases activity	40
3.2.10.4.	Effect of thermal stability	40
3.2.10.5.	Effect of incubation period on proteases activity	40
3.2.10.6.	Effect of different metal chlorides on proteases activity	41
3.2.10.7.	Effect of CaCl ₂ concentration	41
3.2.10.8.	Effect of enzyme concentration	41
3.2.10.9	Effect of different substrates on proteases activity	
	(substrate- specificity)	42
3.2.10.10.	Effect of substrate concentration	42
3.2.10.11.	Operational stability of the immobilized 20 - 40% acetone	
	proteases fraction	42
3.2.11.	Application of Aspergillus flavus proteases	42
4.EXPERI	MENTAL RESULTS	
4.1.	Screening the collected fungi for proteases production	44
4.2	Detection of toxins.	46

	CONTENTS	page
4.3.	Physiological and biochemical factors affecting proteases	
	production	46
4.3.1.	Effect of different media on proteases production	46
4.3.2.	Effect of inoculums size on proteases production	49
4.3.3.	Effect of incubation period on proteases production	52
4.3.4.	Effect of incubation temperature on proteases production	52
4.3.5.	Effect of different carbon sources on proteases production	57
4.3.6.	Effect of different concentrations of glucose on proteases	
	production	60
4.3.7.	Effect of different nitrogen sources on proteases production	60
4.3.8.	Effect of soybean concentration on proteases production	61
4.3.9.	Effect of initial pH on proteases production	68
4.3.10.	Effect of different buffering pH on proteases production	71
4.3.11.	Effect of different concentrations of KCl on proteases	
	production	74
4.3.12.	Effect of different concentrations of KH ₂ PO ₄ on proteases	
	production	74
4.3.13.	Effect of different concentrations of MgSO ₄ .7H ₂ O on	
	proteases production	79
4.3.14.	Effect of some additives on proteases production	82
4.3.14.1.	Effect of different metal chlorides on proteases production	
	by Aspergillus flavus	82
4.3.14.2	Effect of different concentrations of Tweens	85
4.4.	Partial purifiction of Aspergillus flavus proteases	85
4.4.1.	Fractional precipitation by acetone	85
4.4.2.	Fractional precipitation by ethanol	90
4.4.3.	Fractional precipitation by ammonium sulphate	92
4.5.	Immobilization of partially purified Aspergillus flavus	
	proteases	95

	CONTENTS	page
4.5.1.	By ionic binding	95
4.5.2.	By physical adsorption	95
4.5.3.	By entrapment	100
4.6.	Properties of the free and immobilized Aspergillus flavus	
	proteases	100
4.6.1.	Effect of different pHs on proteases activity	103
4.6.2.	Effect of pH stability	103
4.6.3.	Effect of assayed temperatures on proteases activity	108
4.6.4.	Thermal stability	112
4.6.5.	Effect of reaction time on proteases activity.	113
4.6.6.	Effect of different metal chlorides on proteases activity	120
4.6.7	Effect of different CaCl ₂ concentrations	120
4.6.8.	Effect of enzyme concentrations on proteases activity	125
4.6.9	Effect of substrate specificity	125
4.6.10.	Effect of different substrate (casein) concentrations	130
4.6.11.	Operational stability of the immobilized Apergillus flavus	
	proteases	130
4.7.	Application of Aspergillus flavus proteases in batting	
	process	139
5.	DISCUSSION	143
6.	SUMMARY	166
7.	REFERENCES	171
	ARABIC SUMMARY	

	List of Tables	Page
Table (1)	Screening the collected fungi for proteases production	45
Table (2)	Production of proteases by <i>Aspergillus flavus</i> using different media	47
Table (3)	Effect of inoculum size on proteases activity and S.E.A by Aspergillus flavus	50
Table (4)	Effect of incubation period on biomass, proteases activity and S.E.A <i>by Aspergillus flavus</i>	53
Table (5)	Effect of incubation temperature on proteases activity and S.E.A <i>by Aspergillus flavus</i>	55
Table (6)	Effect of different carbon sources on proteases activity and S.E.A by <i>Aspergillus flavus</i>	58
Table (7)	Effect of different glucose concentrations on proteases production	62
Table (8)	Effect of different nitrogen sources on proteases activity and S.E.A by <i>Aspergillus flavus</i>	64
Table (9)	Effect of different concentrations of soybean on proteases activity and S.E.A by <i>Aspergillus flavus</i>	66
Table(10)	Effect of different initial pH values on proteases activity and S.E.A by <i>Aspergillus flavus</i>	69
Table(11)	Effect of different buffering pH medium on proteases activity and S.E.A by <i>Aspergillus flavus</i>	72
Table(12)	Effect of different concentrations of KCl on proteases activity and S.E.A by <i>Aspergillus flavus</i>	75
Table(13)	Effect of different concentrations of KH ₂ PO ₄ on proteases activity and S.E.A by <i>Aspergillus flavus</i>	77
Table(14)	Effect of different concentrations of MgSO ₄ .7H ₂ O on proteases activity and S.E.A by <i>Aspergillus flavus</i>	80
Table(15)	Effect of different metal chloride on proteases activity and S.E.A by <i>Aspergillus flavus</i>	83
Table(16)	Effect of different concentrations of Tweens on proteases activity and S.E.A by <i>Aspergillus flavus</i>	86

Table(17)	Fractional precipitation of Aspergillus flavus culture filtrate	
	by acetone	88
Table(18)	Fractional precipitation of Aspergillus flavus culture filtrate	
	by ethanol	91
Table(19)	Fractional precipitation of Aspergillus flavus culture filtrate	
	by ammonium sulphate	93
Table(20)	Immobilization of Aspergillus flavus proteases by ionic	
	binding	96
Table(21)	Immobilization of Aspergillus flavus proteases by physical	
	adsorption	98
Table(22)	Immobilization of Aspergillus flavus proteases by	
	entrapment	101
Table(23)	Effect of different pH values of the reaction mixture on	
	the free and immobilized <i>Aspergillus flavus</i> proteases activity	104
Table(24)	pH stability of the free and immobilized <i>Aspergillus</i>	104
1 abic(24)	flavus proteases	106
Table(25)	Effect of the assayed temperatures on the free and	
	immobilized Aspergillus flavus proteases activity	109
Table(26)	Thermal stability of the free and immobilized Aspergillus	
	flavus proteases	114
Table(27)	Activation energy, half-life and deactivation rate constant	
	of the free partially purified and immobilized of	
	Aspergillus flavus proteases	117
Table(28)	Effect of reaction time on the free and immobilized	
	Aspergillus flavus proteases activity	118
Table(29)	Effect of different metal chlorides on the free and	
	immobilized Aspergillus flavus proteases activity	121
Table(30)	Effect of different CaCl ₂ concentration on the free and	
,	immobilized Aspergillus flavus proteases activity	123
Table(31)		123
Table(31)	Effect of free and immobilized enzyme concentration on Aspergillus flavus proteases activity	126
	risperguius jiuvus proteases activity	120

Table(32)	Effect of substrate specificity	128
Table(33)	Effect of different substrate concentration on the free and immobilized <i>Aspergillus flavus</i> proteases activity	132
Table(34)	Determination of kinetic constants (K _m and V _{max})	
	using Linweaver-Burk plot	134
Table(35)	Operational stability of immobilized Aspergillus flavus	
	proteases	137

	List of Figures	page
Fig. (1)	Production of <i>Aspergillus flavus</i> proteases by usingdifferent media	48
Fig. (2)	Effect of inoculum size on proteases production by Aspergillus flavus	51
Fig. (3)	Effect of incubation period on proteases production by Aspergillus flavus	54
Fig. (4)	Effect of incubation temperature on proteases production by <i>Aspergillus flavus</i>	56
Fig. (5)	Effect of different carbon sources on proteases production by <i>Aspergillus flavus</i>	59
Fig. (6)	Effect of different glucose concentrations on proteases production by <i>Aspergillus flavus</i>	63
Fig. (7)	Effect of different nitrogen sources on proteases production by <i>Aspergillus flavus</i>	65
Fig. (8)	Effect of different concentrations of soybean on proteases activity and S.E.A by <i>Aspergillus flavus</i>	67
Fig. (9)	Effect of different initial pH values on proteases production by <i>Aspergillus flavus</i>	70
Fig. (10)	Effect of different buffering pH on proteases production by Aspergillus flavus	73
Fig. (11)	Effect of different concentrations of KCl on proteases production by <i>Aspergillus flavus</i>	76
Fig. (12)	Effect of different concentrations of KH ₂ PO ₄ on proteases production by <i>Aspergillus flavus</i>	78
Fig. (13)	Effect of different concentrations of MgSO _{4.7} H ₂ O on proteases production by <i>Aspergillus flavus</i>	81
Fig. (14)	Effect of different metal chlorides on proteases activity and S.E.A by Aspergillus <i>flavus</i>	84
Fig. (15)	Effect of different concentrations of tweens on proteases production by <i>Aspergillus flavus</i>	87
Fig. (16)	Fractional precipitation of <i>Aspergillus flavus</i> culture filtrate by acetone	89
Fig. (17)	Fractional precipitation of <i>Aspergillus flavus</i> culture filtrate by ethanol	92
Fig. (18)	Fractional precipitation of <i>Aspergillus flavus</i> culture filtrate by ammonium sulphate	94
Fig. (19)	Immobilization of <i>Aspergillus flavus</i> proteases by ionic binding	97

	List of Figures	page
Fig. (20)	Immobilization of <i>Aspergillus flavus</i> proteases by physica adsorption	99
Fig. (21)	Immobilization of <i>Aspergillus flavus</i> proteases by entrapment	102
Fig. (22)	Effect of different pH values on the free and immobilized Aspergillus flavus proteases activity	105
Fig. (23)	pH stability of the free and immobilized <i>Aspergillus flavus</i> proteases	107
Fig. (24)	Effect of assayed temperature on the free and immobilized proteases activity of <i>Aspergillus flavus</i>	110
Fig. (25)	Log of relative activity as a function of temperature for the free and immobilized <i>Aspergillus flavus</i> proteases	111
Fig. (26)	Thermal stability of the free and immobilize of <i>Aspergillus flavus</i> proteases activity	115
Fig. (27)	Log of activity retained as a function of time for the free and immobilized <i>Aspergillus flavus</i> proteases	116
Fig. (28)	Effect of reaction time on the free and immobilized Aspergillus flavus proteases activity	119
Fig. (29)	Effect of different metal chlorides on the free and immobilized <i>Aspergillus flavus proteases</i> activity	122
Fig. (30)	Effect of different CaCl ₂ concentration on the free and immobilized <i>Aspergillus flavus</i> proteases activity	124
Fig. (31)	Effect of free and immobilized enzyme concentration on <i>Aspergillus flavus</i> proteases activity	127
Fig. (32)	Effect of substrate specificity	129
Fig. (33)	Effect of different substrate concentrations on the free and immobilized <i>Aspergillus flavus</i> proteases activity	133
Fig.(34a)	Lineweaver-Burk plot for the free A. flavus proteases	135
Fig.(34b)	Lineweaver-Burk plot for the immobilized A. flavus proteases	136
Fig. (35)	Operational stability of immobilized <i>Aspergillus flavus</i> proteases	138
Fig. (36)	SEM for leather samples treated with local unhairing agent with "Na ₂ S Local 3 %" and bated with lab enzymes	140
Fig. (37)	SEM for leather samples treated with local unhairing agent with "Na ₂ S Local 4 %" and bated with lab enzymes	141

List of Figures					page				
Fig. (38) SEM for leather samples treated with local unhearing agent with "Na ₂ S Local 5 %" and bated with lab									
	enzymes								142