

CLETTON TOTAL CONTROLLED

تبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيل

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار في درجة حرارة من 15 – 20 منوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

شبكة المعلومات الجامعية

ثبكة المعلومات الجامعية

بعض الوثائق الأصلية تالفة

PHYSIOLOGICAL STUDIES ON SEEDS GERMINATION AND SEEDLING GROWTH OF SOME VEGETABLE CROPS

By

MAGDA MOHAMED HAFIZ

B. Sc. Agric. (Horticulture) Cairo University, (1973)M. Sc. Agric. (Horticulture) Ain Shams University, (1991)

A Thesis Submitted in Partial Fulfillment of The Requirement for The Degree of

DOCTOR OF PHILOSOPHY

in Agriculture Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

B 00V-

APPROVAL SHEET

PHYSIOLOGICAL STUDIES ON SEEDS GERMINATION AND SEEDLING GROWTH OF SOME VEGETABLE CROPS

Ву

MAGDA MOHAMED HAFIZ

B. Sc. Agric. (Horticulture) Cairo University, (1973)
M. Sc. Agric. (Horticulture) Ain Shams University, (1991)

This thesis for Ph. D. Degree has been approved by:

Prof. Dr. Awatef G. Behairy ... Rehairy

Prof. of Vegetable Crops, National Research Centre

Prof. Dr. Ibrahim Ibrahim El-Oksh

Prof. of Vegetable Crops and chairman of Department of Horticulture, Ain Shams University

Prof. Dr. Kh. A. Okasha

Prof. of Horticulture, Ain Shams University (Supervisor)

Date of examination: 23/3/1999

PHYSIOLOGICAL STUDIES ON SEEDS GERMINATION AND SEEDLING GROWTH OF SOME VEGETABLE CROPS

By

MAGDA MOHAMED HAFIZ

B. Sc. Agric. (Horticulture) Cairo University, (1973) M. Sc. Agric. (Horticulture) Ain Shams University, (1991)

Under the Supervision of: Prof. Dr. Kh. A. Okasha

Prof. of Horticulture, Ain Shams University

Prof. Dr. Kamal Mohamed El-Habbasha

Prof. of Vegetable Crops, National Research Centre

Dr. Mohamed Emam Ragab

Associate Prof. of Vegetable Crops, Ain Shams University

ABSTRACT

Magda Mohamed Hafiz (Physiological Studies on seeds germination and seedling growth of some vegetable crops) Ph. D. Agriculture Science (Vegetable Crops) Department of Horticulture, Faculty of Agriculture, Ain Shams University.

A set of experiments were carried out at the National Research Centre, to investigate:

- 1. The effect of different levels of salinity on seed germination and seedling growth.
- 2. The effect of different degrees of temperature on seed germination.
- 3. The effect of some chemical herbicides on seed germination.
- 4. The effect of root exudates on seed germination and seedling growth of the same vegetables.

Germination percentage of lettuce and carrot crops were significantly affected with increasing salinity levels up to 6000 ppm as compared with the germination percentage of tomato and cabbage. Salinity level of 8000 ppm increased the number of days required for maximum seed germination compared with their control treatment. Increasing salinity level up to 10000 ppm sharply depressed hypocotyl length of the crops under investigation. On the other hand increasing salinity level up to 4000 ppm decreased significantly radical length of carrot more than other vegetable crop seeds.

Increasing salinity levels of irrigation water caused a progressive decrease on all the vegetative growth characteristics of tomato, cabbage and lettuce seedling.

The application of low temperature caused significant sharp decrease in germination percentages of tomato and cabbage than that of lettuce and carrot. On the other hand, the lowest values of that character were recorded by high temperature with lettuce, it is clear from our results that low temperature had a harmfull effect on hypocotyl and radical length than high temperature which improved the germination % and germination rate index.

Concerning the addition of herbicides (Stomp and Giza gard) to the media of germination, the obtained results show that increasing the concentration of herbicides decreased the measurements of germination as well as the hybocotyl and radical length. On the other hand, low concentrations of Giza gard herbicide (1000 and 2000 ppm) increased the germination percentage of the vegetable crops seeds under investigation.

It is evident from the obtained results that the effect of tomato and carrot root exudates stimulated the measurements of germination, hypocotyle and radical length of carrot and tomato whereas, the root exudates of lettuce and carrot improved the germination percentage and germination rate index of cabbage compared with the control, also increased the vegetative growth of cabbage seedlings. On the other hand, tomato and lettuce increase germination percentage, mean rate index hypocotyl and radical length and the vegetative growth of lettuce seedling. However, carrot root exudates increase the measurements germination and vegetative growth of tomato, carrot and cabbage seedling.

Root exudates of cabbage seedlings inhibited the vegetative growth characteristics of tomato, carrot, lettuce and cabbage.

The seed and root exudates of tomato contained the greatest amount of growth regulators followed by carrot but the greatest amount of inhibitors were recorded by cabbage.

Lettuce seed exudates contained the highest amount of phenols while carrot seed exudates had the lowest amount of phosphorus. On the other hand, roots of lettuce seedlings excreted the highest percentage of nitrogen, but the highest percentage of potassium was obtained from tomato roots.

Key words:

Growth characteristics, Root exudates, Germination rate index, Herbicides, Salinity, Tomato, Carrot, Lettuce, Cabbage, Germination percentage, Temperatures, Stomp, Giza gard.

ACKNOWLEDGEMENT

I would be honoured to convey my deepest thanks and sincere gratitude to **Prof. Dr. Kh. A. Okasha** Professor of Horticulture, Faculty of Agriculture, Ain Shams University, for his supervision and his true endeavors, advice, as well as his continuous and valuable guidance in the work.

The author wishes to express her deep sense of gratitude to **Prof. Dr. K.M. El-Habbasha**, Professor of Vegetable Crops, National Research Centre, for his supervision, constructive guidance, encouragements and continuous valuable help thoughout this investigation.

Deepest and sincere gratitude and appreciation to **Prof. Dr. Awatef Behairy**, Professor of Vegetable Crops, National Research Centre, Cairo, for her valuable guidance, continuous advice and help throughout the course of this work.

Great thanks are expressed to **Dr. M.E. Ragab**, Associate Prof. of Vegetable Crops, Ain Shams University for his valuable supervision and profitable efforts in finishing these studies.

I would like to thank **Dr. A. El-Sawy** Researcher, in Plant Cell and Tissue Culture Department, National Research Centre for his continuous help and encouragement during this investigation.

Sincere thanks is due to my collegues in vegetables group, and Plant Cell, National Research Centre, Cairo, and tissue culture group for their willing help and co-operation during the course of this investigation.

My deepest thanks to my husband and my children Ghada, Neveen and Mohamed for their encouragement and helpful support.

List of Contents

·	Pag
Introduction	1
Review of Literature	2
Materials and Methods	29
Results and Discussion	36
1. Germination studies	36
1.1. Effect of salinity	36
1.1.1 Germination percentage	36
1.1.2. Germination rate index.	39
1.1.3. Hypocotyl and radical length	42
1.2. Effect of temperature	45
1.2.1. Germination percentage	45
1.2.2. Germination rate index	45
1.2.3. Hypocotyl and radical length	48
1.3. Effect of herbicides	51
1.3.1 Germination percentage	51
1.3.2. Germination rate index	51
1.3.3. Hypocotyl and radical length	56
1.4. Effect of root exudates	61
1.4.1. Germination percentage	61
1.4.2. Germination rate index	62
1.4.3. Hypocotyl and radical length	65
2. Vegetative growth	65
2.1. Effect of root exudates of some vegetable crops on its	
seedling growth	65
2.2. Effect of salinity of some vegetable crops on its	
seedling growth	76

		Page
3. Che	mical composition	87
3.1. N	Nitrogen content in seedlings	87
3.1.1.	Effect of salinity	87
3.1.2.	Effect of temperature	87
3.1.3.	Effect of herbicide	90
3.1.4.	Effect of root exudates	90
3.2.	Seed exudates	93
3.2.1.	Nitrogen, Phosphorus and Potassium content-	93
3.2.4.	Total phenols	96
3.2.5.	Amino acids	96
3.2.6.	Promoters and inhibitors	
3.3. I	Root exudates	100
3.3.1.	Nitrogen, Phosphorus and Potassium content	100
3.3.4.	Total phenois	
3.3.5.	Amino acids	103
3.3.6.	Promoters and inhibitors	103
Summary _		109
References		114
Arabic Sun	· · · · · · · · · · · · · · · · · · ·	

List of Tables

Table	No.	Page
1.	Effect of different salinity levels on germination percentage of some vegetable crop seeds	3.7
2		3.1
2.	Effect of different salinity levels on germination rate	40
_	index of some vegetable crop seeds	40
3.	Effect of different salinity levels on hypocotyl and	
	radical length of some vegetable crop seeds	43
4.	Effect of different temperature levels on germination	
	percentage and germination rate index of some	
	vegetable crop seeds.	46
5.	Effect of different temperature levels on the hypocotyl	
	and radical lengths of some vegetable crop seeds	49
6.	Effect of some herbicides with different concentrations	
	on germination percentage of some vegetable crop	52
	seeds	
7.	Effect of some herbicides with different concentrations	
	on germination rate index of some vegetable crop	
	seeds	54
8.	Effect of some herbicides with different concentrations	
0.	on the hypocotyl length of some vegetable crop	57
	seeds	57
9.	Effect of some herbicides with different concentrations	
<i>)</i> .	on the radical length of some vegetable crop seeds	59
10.	- · · · · · · · · · · · · · · · · · · ·	33
10.	Effect of root exudates of some vegetable seedlings on	
	germination percentage and germination rate index	63
11.	Effect of root exudates of some vegetable seedlings on	
	hypocotyle and radical length of same vegetable	66
	seeds	