Study of Neutrophil functions in infants and children with Recurrent Infections

Thesis

Submitted for partial fulfillment of Master degree in Pediatrics

By

Nermeen Ahmed Shawky Ibrahim

M.B.B.Ch. 2006, Faculty of Medicine Ain Shams University

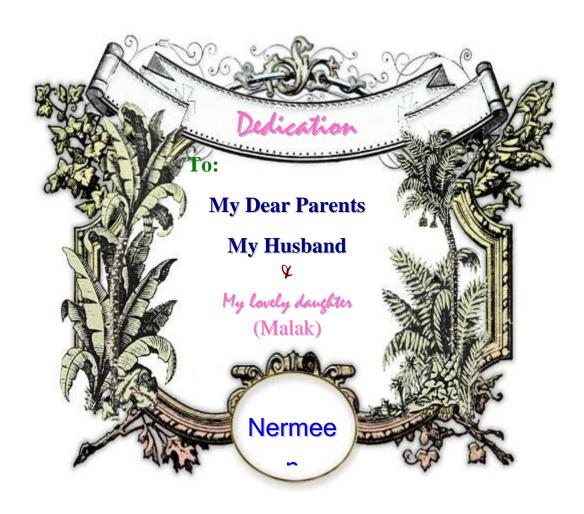
Under supervision of

Prof. Zeinab Awad El-Sayed

Professor of Pediatrics Faculty of medicine - Ain Shams University

Dr. Dalia Helmy El-Ghoneimy

Assistant Professor of Pediatrics Faculty of medicine - Ain Shams University


Dr. Mohammed Tarif Mohamed Hamza

Lecturer of Clinical Pathology Faculty of medicine - Ain Shams University

> Faculty of Medicine Ain Shams University

2014

رسم الله الرحمن الرحيم و أنزل الله عَليْكَ الله عَليْكَ الله عَليْكَ والحِكْمَة و عَلَمَكَ مَا لَمْ تَعْلَمُ تَعْلَمُ تَعْلَمُ اللهِ تَكُنْ تَعْلَمُ وَكَانَ فَصْلُ اللهِ عَلِيمًا عَظِيمًا عَظِيمًا صَدَق الله العظيم صدق الله العظيم الله العظيم

First and above all, I pray thanking Allah for His blessing and granting me the effort to complete and achieve this work.

I would like to express my thanks and appreciation to the supervisors, Prof.Dr. Zeinab Awad El-Sayed Professor of Pediatrics, Faculty of Medicine, Ain Shams University, Dr. Dalia Helmy El-Ghoneimy Assistant professor of Pediatrics, Faculty of Medicine, Ain Shams University, and Dr. Mohammed Tarif Mohamed Hamza Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for his laboratory work.

Last, but not least, I would like to thank the patients and their parents who accepted to participate in the study. May Allah grant them full recovery.

Nermeen Shawky

List of Contents

Title Page No.
Acknowlodgementi
List of abbreviationsii
List of tablesiv
List of figuresvi
Introduction1
Aim of the Work3
Review of Literature
 Neutrophil Development and Function
 Disorders of Neutrophil Function
 Management of Neutrophil Dysfunction47
Patients and Methods55
Results66
Discussion
Recommendations
Summary
References 117
Arabic Summary

List of Abbreviations

Abb.	Full term
AD	Autosomal dominant
AR	Autosomal recessive
AT	Ataxia telangiecatsia
BCG	Bacillus calmette-guerin
CD	Clusters of differentiation
CFU-G	Colony forming unit granulocyte
CFU-GMP	Colony forming unit granulocyte macrophage progenitor
CGD	Chronic granulomatous disease
CHS	Chediak Higashi syndrome
DHR	Dihydrorhodamine test
FTT	Failure to thrive
G6Pase	Glucose 6 phosphatase
G6PD	Glucose 6 phosphate dehydrogenase
G-CSF	Granulocyte colony stimulating factor
GM-CSF	Granulocyte macrophage colony stimulating factor
Gp	Glycoprotein
GSD	Glycogen storage disease
H_2O_2	Hydrogen peroxide
HIES	Hyper immunoglobulin E syndrome
HLH	Hemophagocytic lymphohisticytosis
IgA	Immunoglobulin A
IDR	Immunodeficiency disease related score
IL	Interleukin
LAD	Leucocyte adhesion defect
LPS	Lipopolysaccharide

List of Abbreviations (Cont...)

Abb.	Full term
MPO	Myeloperoxidase
NADPH	Nicotinamide adenine dinucleotide phosphate oxidase enzyme
NBT	Nitro blue tetrazoluim test
NETs	Neutrophil extracellular traps
NK	Natural killer
$\mathrm{O_2}^-$	Superoxide
ОН	Hydroxyl radical
PHOX	Phagocyte oxidase enzyme
PID	Primary immunodeficiency
PMA	Phorbol methyl acetate
PMNs	Polymorphonuclear leucocytes
PMP	Pathogen-associted molecular pattern
PRR	Pattern recognition receptors
RAC 2	Ras related C3 botulinuim toxin
ROS	Reactive oxygen species
S. Aureus	Staphylococcal aureus
SCID	Severe combined immunodeficiency
SI	Stimulation index
SIgAD	Selective IgA deficiency
SOD	Superoxide dismutase
TMP-SMX	Trimethoprim-sulfamethoxazole
TNF-	Tumor necrosis factor-
WAS	Wiskott Aldrich syndrome

List of Tables

Table No.	Title	Page No.
Table (1):	Major primary neutrophil dysfunction syndro	mes:22
Table (2):	The frequency of the 10 warning signs	56
Table (3):	Severity of malnutrition	59
Table (4):	Immune deficiency disease-related score	59
Table (5):	Levels of WBCS, neutrophils, lymphocytes in normal subjects by age in the pediatric age gr	
Table (6):	Levels of immunoglobulin A, G, M and E in normal subjects by age in the pediatric age gr	
Table (7):	Demographic data and characteristics of paties primary immunodeficiency diseases (PID)	
Table (8):	Laboratory data of PID patients	69
Table (9):	Demographic data and characteristics of paties recurrent infections	
Table (10):	Laboratory data of patients with recurrent infe	ections 75
Table (11):	The frequency of the "10 warning signs" newly diagnosed CGD patients among patie recurrent infections and the remaining patie recurrent infections	nts with
Table (12):	Comparison of IDR score between newly di CGD patients and patients with recurrent infe	O

List of Tables (Cont...)

Table No.	Title	Page No.
Table (13):	Comparison of the results of DHR test between patients, patients with recurrent infections a control group	nd the
Table (14):	Variation of clinical data among PID patient those with recurrent infections	
Table (15):	Variation of the studied laboratory data amorpatients and those with recurrent infections	
Table (16):	Comparison between the characteristics of PID p with normal DHR test and those with defective test	e DHR
Table (17):	Laboratory data of the studied PID patient normal neutrophil function versus those neutrophil dysfunction	with

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The process of myelopoeisis. Myelop	poiesis7
Figure (2):	Different stages of neutrophil developm	nent10
Figure (3):	Model of NADPH oxidase assembly	13
Figure (4):	Neutrophil phagocytosis and activities microbicidal systems	
Figure (5):	DHR flow cytometric assay: Normal	reaction20
Figure (6):	Clinical features of chronic grant disease	
Figure (7):	Dihydrorhodamine (DHR) flow of assay for diagnosis of CGD	•
Figure (8):	Features of leukocyte adhesion of type I	· ·
Figure (9):	Results of phagocytic and lytic indic PID patients.	
Figure (10):	Results of phagocytic and lytic indice patients with recurrent infections	•
Figure (11):	Results of DHR test among PID patie	ents79
Figure (12):	DHR test of the patient with CGD	80
Figure (13):	Family pedigree of the CGD patient	81
Figure (14):	DHR test of the patient with AT (no	.4)82
Figure (15):	DHR test of the patient with AT (no.	8)83

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (16):	DHR test of the patient with AT (no.1	7)84
Figure (17-a,b):DHR test of the patient with F Pudlak Syndrome	-
Figure (18):	DHR test of the patient with SCID	87
Figure (19):	Results of DHR test among patrecurrent infections	
Figure (20):	DHR test of a patient with CGD (no	0.20)89
Figure (21):	DHR test of a patient with CGD (no	0.21)90
Figure (22):	DHR test of a patient with CGD (no	0.22)91
Figure (23):	DHR test of a patient with CGD (no.2	23)92
Figure (24):	DHR test of a patient with CGD (no	0.24)93
Figure (25):	DHR test of a patient with CGD (no	0.25)94

Introduction

Neutrophils are the first line of defense against bacterial invasion. As such, primary alterations in their number and function can result in propensity for serious, often life threatening infections. In general, patients with neutrophil dysfunction present with chronic, deep tissue infections rather than with overt sepsis, which is more likely to occur after a deep infection has gone unrecognized or improperly treated for a few days or weeks (*Kyono and Coates*, 2002).

Although practice parameters have been published recently for the diagnosis of wide range of primary immunodeficiency diseases, including phagocyte defects, few tests are widely available for specific evaluation of phagocyte function (*Bonilla et al., 2005*). The most important step in the diagnosis of a functional disorder of neutrophils is to have a clinical suspicion of phagocyte disorder (*Winkelstein et al., 2000*).

Evaluation for phagocytic cell disorders should be initiated among those patients who have recurrent respiratory tract bacterial infections, such as pneumonia, sinusitis and suppurative otitis media; skin infections, as cellulitis or abscesses; lymphadenitis or infections presenting at unusual sites (renal, hepatic, brain abscesses) or caused by unusual pathogens (ie, Aspergillus pneumonia, disseminated candidiasis, Serratia, marcescens, etc) (Wolach et al., 2000).

The primary disorders of the phagocytic function include chronic granulomatous disease (CGD), hyperimmunoglobulin E syndrome, (HIES), leukocyte adhesion deficiencies (LAD), Chediak- Higashi syndrome (CHS), myeloperoxidase deficiency (MPO) and white cell G6PD deficiency (enzyme level less than 1%) (Wolach et al., 2000).

On the other hand, the number of patients with recurrent bacterial infections and suspected impairment of neutrophil function largely exceeds the incidence of well-characterized congenital defects of neutrophils (Brenneis et al., 1993).

Aim of the Work

The aim of this study was to evaluate the neutrophil function in a group of Egyptian children with proved primary immunodeficiency diseases and another with unexplained recurrent, severe, or unusual bacterial and /or fungal infections. The relationship between neutrophil dysfunction and type and severity of infections was as well evaluated.

Chapter one

Neutrophil **D**evelopment and **F**unction

Neutrophils are a critical cellular component of the innate immune response to invading microorganisms. As such, primary alterations in their number or function can result in propensity for serious, often life threatening infections. Children with primary neutrophil function defects present predominantly with low-grade chronic bacterial or fungal infections, these infections tend to be persistent and difficult to resolve with standard treatment. Overt bacterial sepsis is an unusual finding at presentation (Wolach et al., 2000).

I. Neutrophil development:

Developmental hematopoiesis occurs in three anatomic stages: *mesoblastic, hepatic, and myeloid. Mesoblastic hematopoiesis* occurs in extra embryonic structures, principally in the yolk sac, and begins between the 10th and 14th days of gestation in which neutrophils are first observed in the human fetus about 5 weeks postconception as small clusters of cells around the aorta. *Hepatic hematopoiesis* takes place by 6–8th week of gestation in which the liver replaces the yolk sac as the primary site of blood cell production. While *myeloid hematopoiesis* takes place by 10–12th week, in which the fetal bone marrow space begins to develop around the 8th week post