Comparison of the bond strengths of resin cement to new esthetic CAD/CAM materials and their durability

A thesis submitted for partial fulfillment of the Master Degree of Science requirements in Crown & Bridge, Faculty of Dentistry, Ain Shams University

By Ahmed Mohsen Mohamed Foad

B.D.S

Faculty of Dentistry,

Ain Shams University,

2010

2015

Supervisors

Dr. Tarek Salah Morsi

Assistant Professor and Head of Crown and Bridge Department,
Faculty of Dentistry, Ain Shams University

Dr. Ahmad Khaled Abo El-Fadl

Lecturer, Crown and Bridge Department,

Faculty of Dentistry, Ain Shams University

Faculty of Dentistry,

Ain Shams University

2015

Acknowledgment

No words can express my deepest thanks and sincere gratitude as well as appreciation to *Dr. Tarek Salah Morsi*, Assistant Professor and head of department of Crown and Bridge department, Faculty of Dentistry, Ain Shams University. His valuable advice, devoted effort and unique cooperation, will always be deeply remembered.

My sincere thanks also goes to *Professor Dr. med dent Matthias Kern*, Professor and Chairman of department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel who provided me an opportunity to join his team and helped me through every part in this research and gave me all the help and support and access to all his laboratory facilities.

I want to express my profoundest gratitude to *Dr. Ahmad Khaled Abo El-Fadl*, lecturer at Crown and Bridge department, Faculty of Dentistry, Ain Shams University. From finding an appropriate subject in the beginning to the process of writing the thesis, Dr. Ahmed offered his unreserved help, guidance, good advice, support and friendship.

Last but not least, deepest thanks to my dear professors, colleagues and staff members of Crown and Bridge Department, Faculty of Dentistry, Ain Shams University especially *Dr. Maged zohdy and Dr, Ahmed Sabet* for their great support, encouragement and cooperation.

Words cannot express enough thanks to my friends and colleagues in department of Prosthodontics, Propaedeutics and Dental Materials, Christian-Albrechts University especially *Kamal Ebeid and Mr. Frank Lehmann* for helping me from the beginning of this project and throughout my work and their valuable support and advice to finish it.

Dedication

This work is dedicated to

My dear parents,

Precious sister and brother and

My Beloved francé

CONTENTS

LIST OF F	FIGURES	VII
LIST OF T	TABLES	XI
ist of abbreviations		XI
INTRODU	NTRODUCTION	
REVIEW OF LITERATURE		14
Adhesio	on	18
Bond	strength tests	20
Ceran	nic surface treatments and bond strength	23
Thermo	cycling	33
Statement of	of the problem	36
AIM OF T	HE STUDY	37
MATERIA	ALS AND METHODS	38
I. Ma	terials	38
II. N	Methods	40
1.	Sample grouping	40
2.	Fabrication of the specimens	41
3.	Bonding and storage	44
4.	Tensile bond strength testing	58
5.	Aging using thermocycling technique	60
6.	Mode of failure and topographic features	62
7.	Data Management and Analysis	64

RESULTS		65
1. Dat	ta analysis and interpretation	65
I.	The Effect of changes in material	69
II.	The Effect of changes in surface treatments	70
III.	The Effect of changes in the aging process	71
IV.	Interaction between material and surface treatment	72
V.	Interaction between material and aging	74
2. Top	pographic features	76
3. Mo	ode of failure and fractographic analysis	82
DISCUSSION		104
SUMMARY		112
Conclusion	ns	114
Recommendations		114
REFERENCES		115
ARARIC SUMMARY		122

LIST OF FIGURES

Figure 1: Structure of the Ammonium polyfluoride	24
Figure 2: Materials used in this invitro study	39
Figure 3: CAD/CAM materials used in this study, from the left side: emax C	AD,
Vita Enamic and Vita Suprinity	39
Figure 4: ISOMET 1000 precision sawing machine	42
Figure 5: BUEHLER Automet 250 polisher and grinder machine	43
Figure 6: Square shaped specimens ready for bonding	44
Figure 7: A diagrammatic view of the bonding device	45
Figure 8: The bonding devices, Plexiglas and the ceramic specimens	46
Figure 9: Plexiglas adjusted in a positioning device	46
Figure 10: Plexiglas filled with composite resin	47
Figure 11: Upper surfaces of the tubes rubbed against a straight mixing pad	47
Figure 12: Chemical curing of the composite inside the plexiglas tube	48
Figure 13: Adjusting the tubes in the bonding devices	48
Figure 14: HF acid etching	49
Figure 15: Rinsing the HF acid for 1 minute	50
Figure 16: Oil free air drying	50
Figure 17: Monobond Plus primer	51
Figure 18: Monobond Plus application	51
Figure 19: Monobond Etch ″ primer	52
Figure 20: Monobond Etch ″ primer application	53
Figure 21: Rinsing for 15 seconds	53
Figure 22: Applying the resin cement on the tubes	54
Figure 23: Adjusting the ceramic specimens for bonding	55
Figure 24: Bonding the ceramic specimen	55
Figure 25: Resin cement excess removal	56

Figure 26: Airblock application
Figure 27: Intraoral curing for 20 seconds
Figure 28: Kulzer light curing unit
Figure 29: Universal testing machine Zwick
Figure 30: Tensile bond strength loop attachment
Figure 31: Thermocycling machine
Figure 32: Water storage incubator at 37°C
Figure 33: Specimens attached to a metal attachment prepared for SEM
Figure 34: Ceramic specimens after Gold sputtering
Figure 35: Scanning electron microscope
Figure 36: Correlation between material, surface treatment and TBS mean values
(MPa)
Figure 37: Correlation between material, aging and TBS mean values (MPa) 68
Figure 38: Multiple comparisons showing the significance of changes in materials
on TBS (MPa)
Figure 39: Multiple comparisons showing the significance of changes in surface
treatments on TBS (MPa)
Figure 40: Multiple comparisons showing the significance of changes in aging
process on TBS (MPa)
Figure 41: Interaction between the materials and surface treatments and its effect
on TBS (MPa)
Figure 42: Interactions between materials and aging on TBS (MPa)74
Figure 43: SEM image for e.max CAD polished to 600 Grit
Figure 44: SEM image for e.max CAD polished to 600 Grit+ HF acid 20 sec 77
Figure 45: SEM image for emax CAD polished to 600 Grit+ MBE&P 60 sec 77
Figure 46: SEM image for Vita Enamic polished to 600 Grit
Figure 47: SEM image for Vita Enamic polished to 600 Grit+ HF acid for 60 sec
79

Figure 48:	SEM image for Vita Enamic polished to 600 Grit+ MBE&P for 60 se	ЭС
•••••		19
Figure 49:	SEM image for Vita Suprinity polished to 600 Grit	30
Figure 50:	SEM image for Vita Suprinity polished to 600 Grit+ HF acid for 20 seconds $\frac{1}{2}$	ЭС
	8	31
Figure 51:	SEM image for Vita Suprinity polished to 600 Grit+ MBE&P for 20 seconds $\frac{1}{2}$	ЭС
	8	31
Figure 52:	Percentage of types of failures after 3 & 150 days	32
Figure 53:	Stereomicroscope image for group 1AI mode of failure	33
Figure 54:	SEM image for for group 1AI mode of failure	33
Figure 55:	Stereomicroscopic image for group 1BI mode of failure	34
Figure 56:	SEM image for group 1BI mode of failure	34
Figure 57:	Stereomicroscope image for group 1CI mode of failure	35
Figure 58:	SEM image for group 1CImode of failure	35
Figure 59:	Stereomicroscope image for group 2AI mode of failure	36
Figure 60:	SEM image for group 2AI mode of failure	36
Figure 61:	Stereomicroscope image for group 2BI mode of failure	37
Figure 62:	SEM image for group 2BI mode of failure	37
Figure 63:	Stereomicroscope image for group 2CI mode of failure	38
Figure 64:	SEM image for group 2CI mode of failure	38
Figure 65:	Stereomicroscope image for group 3AI mode of failure	39
Figure 66:	SEM image for group 3AI mode of failure	39
Figure 67:	Stereomicroscope image for group 3BI mode of failure9	90
Figure 68:	SEM image for group 3BI mode of failure	90
Figure 69:	Stereomicroscope image for group 3CI mode of failure)1
Figure 70:	SEM image for group 3CI mode of failure)1
Figure 71:	Stereomicroscope image for group 1AII mode of failure)2
Figure 72:	SEM image for group 1AII mode of failure)2
Figure 73:	Stereomicroscope image for group 1BII mode of failure)3

Figure 74: SEM image for group 1BII mode of failure	93
Figure 75: Stereomicroscope image for group 1CII mode of failure	94
Figure 76: SEM image for group 1CII mode of failure	94
Figure 77: Stereomicroscope image for group 2AII mode of failure	95
Figure 78: SEM image for group 2AII mode of failure	95
Figure 79: Stereomicroscope image for group 2BII mode of failure	96
Figure 80: SEM image for group 2BII mode of failure	96
Figure 81: Stereomicroscopic image for group 2CII mode of failure	97
Figure 82: SEM image for group 2CII mode of failure	97
Figure 83: Stereomicroscopic image for group 3AII mode of failure	98
Figure 84: SEM image for group 3AII mode of failure	98
Figure 85: Stereomicroscopic image for group 3BII mode of failure	99
Figure 86: SEM image for group 3BII mode of failure	99
Figure 87: Stereomicroscopic image for group 3CII mode of failure	100
Figure 88: SEM image for group 3CII mode of failure	100
Figure 89: Sample 1 MBE&P 2000x & 5000x	101
Figure 91: Sample 2 MBE&P 2000x & 5000x	101
Figure 93: Sample 3 MBE&P 2000x&P 5000x	102
Figure 95: Sample 4 MBE&P 2000x	102
Figure 97: Sample 5 MBE&P 2000x&5000x	102
Figure 99: Sample 6 MBE&P 2000x&5000x	103

LIST OF TABLES

Table 1: Materials used in this study	38
Table 2: Experimental factorial analysis4	11
Table 3: emax CAD crystalization parameters4	14
Table 4: Vita Suprinity crystalization parameters4	14
Table 5: Technical data of Willytec thermocycler6	50
Table 6: Data collected for means and standard deviations6	55
Table 7: Tests of Between-Subjects Effects6	56
Table 8: Multiple comparisons showing the significance of changes is	in
material on the TBS (MPa)6	59
Table 9: Multiple comparisons showing the significance of changes is	in
surface treatments on the TBS (MPa)7	70
Table 10: Multiple comparisons showing the significance of changes in agin	ıg
process on TBS (MPa)7	71
Table 11: the effect of materials and surface treatments interaction on the	ıе
TBS(MPa)	12
Table 12: materials and aging interaction and its effect on the TBS(MPa)7	14

List of abbreviations

MBE&P: MonoBond Etch and Prime

MBP: MonoBond Plus

SEM: Scanning Electron Microscope

PCIN: polymer infiltrated ceramic network

INTRODUCTION

Throughout the years, dental treatment had an enormous evolution from just emergency treatment relieving pain till it reached preventive treatment ending by esthetic rehabilitation.⁽¹⁾

Nowadays, esthetic correction became one of the patient's main demands raising their expectations to a very high level and being reflected in their self-esteem and confidence.⁽¹⁾

With the introduction of the all ceramic restorations by **McLean** in 1967 fabricating Fixed Partial Denture (FPD) pontic using high alumina ceramics, ⁽²⁾ all ceramic restorations has been used widely since then fulfilling the patients requests. Moreover, the methods of fabricating those restorations changed from just ordinary manual lab work to sophisticated CAD/CAM systems. ⁽³⁾

Usually techniques for ceramic bonding in addition to intraoral repair utilize hydrofluoric acid for etching in spite of its various harmful effects it has concerning the patient and the dentist that **Ozcan et al in 2012** summarized in their study. (4) As a consequence many repair systems were fabricated using less harmful acids as phosphoric acid but reliable bond strength is still debatable.

Nowadays, there are increasing cases where the retention of restorations is reliant on bonding, *e.g.* resin-bonded bridges. Hence, the quality of bonding is of increasing importance, and is a dominant factor required for the long-term success of glass ceramic restorations. In addition, the ceramic and resin cement bond is subjected to a complex environment in the oral cavity being influenced by several extrinsic factors such as temperature change, saliva, daily food and drink intake, biting force and other habits. Consequently, laboratory testing should simulate these variables to enable the development of superior materials and surface

INTRODUCTION

preparation methods that provide long-term durable bond strengths in the oral environment. (5)

Summarizing the above points of view, trying to use different etching solutions instead of hydrofluoric acid and having an efficient bond strength for a reliable long term retention has been a goal for both: having a successful durable restoration and performing a fast and safe intraoral repair.

Although newly introduced CAD/CAM Hybrid ceramics feature a diversity of superior esthetic & mechanical properties, yet, little is known regarding the bond strength of these materials. Moreover, recently introduced bonding systems assume a high bonding performance without the harmful effects of the HF acid.

REVIEW OF LITERATURE

As dentistry continues to evolve, new technologies and materials are continually being offered to the dental profession. Throughout the years, restorative trends and techniques have come and gone. Some material developments have transformed the face of aesthetic dentistry, while other initial concepts have phased out and died. Today all ceramic restorations continue to grow in the area of restorative dentistry, from pressed ceramic techniques and materials to the growing use of zirconia, and new materials that can be created from CAD/CAM technology. (6)

Ceramics are formally defined as compounds of metallic and non-metallic elements consisting of oxides, nitrides, carbides, and silicates. Typical silicates are formed of Si-tetrahedrons, SiO4.⁽⁷⁾ The structure of ceramics exists in the form of crystalline solid or glasses.⁽⁸⁾ Ceramics used in dentistry predominantly contain non-metallic and metallic elements⁽⁹⁾ and are mostly based on silicon that is usually found in the form of silica (silicon dioxide), SiO2, due to silicon's high affinity for oxygen. A vast array of Si-O compounds and silicate minerals exists in the Earth's crust.⁽¹⁰⁾ When silica occurs as a crystalline material, it can be in the form of quartz, crystobalite, and tridymite. Silica in dental ceramics is usually in the form of quartz.⁽⁸⁾ Because of the black appearance of nitrides and carbides, they are not used as biomaterials in dentistry.⁽⁹⁾

The traditional type of dental ceramics are feldsparbased materials containing silica fired at temperatures above 870° C and composed of a tectosilicate mineral feldspar (KAlSi₃O₈), quartz (SiO₂), and kaolin (Al₂O₃·2SiO₂·2 H₂O). Because feldspar-based ceramics were prone to failure owing to their inherent brittle nature, ceramics with higher crystalline content such as alumina (aluminum

trioxide) Al₂O₃ and zirconia (zirconium dioxide) ZrO2, were developed in order to improve the mechanical properties.⁽⁷⁾

The so-called glass-ceramics are different from traditional feldspar-based ceramics because of the larger crystalline phase that helps stop crack growth. The presence of these crystals improves mechanical properties by reducing crack formation. The glassy phase fills the grain boundary to help create a pore-free structure. The crystalline phase grows during ceraming, i.e. conversion from a glass to a partially crystalline glass, and may occupy 50–100% of material. The advantages of glass ceramics include great durability and the ability to bond to the tooth through the use of a resin luting composite. The properties of glass-ceramics depend on the crystal size, the density of crystals, and the interaction between the crystals and the matrix. Glass-ceramics are easier to fabricate than traditional ceramics and do not shrink much after firing. They are also highly translucent because the glassy matrix and the crystalline phase reduce internal light scattering (11)

Innovative CAD/CAM ceramics

The earliest CAD/CAM ceramic inlay was fabricated in 1985 using a ceramic block of fine grain feldspathic ceramic (VitaTM Mark I).⁽¹³⁾ In 2002, it was concluded by **Otto and De Nisco** that the survival probability rate of Cerec-1 CAD/CAM restorations made of Vita Mark I feldspathic ceramic appears to be acceptable to 90.4% after 10 years of clinical service.⁽¹⁴⁾

Lithium disilicate(Li₂SiO₅) glasses have their flexure strength between 350 MPa and 450 MPa. A lithium disilicate CAD/CAM ceramic IPSTM e.max CAD (Ivoclar Vivadent, Liechtenstein) was introduced in 2006 and is a chair-side monolithic restorative material. The blocks are manufactured in a process based on the so-called "pressure-casting" procedure used in the glass industry. They are