

Faculty of Science Microbiology Department

Fungal Production of Antioxidant Using Soybean Residue: Nutritional and Medical Application

A Thesis Submitted for the degree of doctor of philosophy of science (Microbiology)

Presented by Mai Mohamed Magdy Naeem

B.Sc. In Chemistry -Botany 2002 M.Sc. In Microbiology 2010

Supervised by **Prof. Al Zahraa Karam El-Din**

Prof. of Mycology and Medical Mycology ,Microbiology Department, Faculty of Science, Ain Shams University

Prof. Yousseria M.Hassen Shetaia

Prof. of Mycology, Microbiology Department, Faculty of Science, Ain Shams University

Prof. Samira S. Mohamed

Prof. of Fats and Oils, National Research Center.

Prof. Ateff S. Osheba

Prof. of Meat and Fish technology, Food Technology Research Institute, Agricultural Research Center

Dr. Hoida A. Mohamed

Asst.Prof.of Dairy Microbiology Food Technology Research Institute, Agricultural Research Center

> Microbiology Department Faculty of Science Ain Shams University (2015)

Fungal Production of Antioxidant Using Soybean Residue: Nutritional and Medical Application

By Mai Mohamed Magdy Naeem

For the degree of doctor of philosophy of Science (Microbiology)

B.Sc.2002 M.Sc.2010

Microbiology Department Faculty of Science Ain Shams University (2015)

APROVAL SHEET

A Thesis

Submitted for the Degree of Doctor of Philosophy of Science (Microbiology)

"Fungal Production of Antioxidant Using Soybean Residue: Nutritional and Medical Application"

By

Mai Mohamed Magdy Naeem Approved

By: Examination Committee

Prof. Rawia F. Gamal

Approved Faculty of Council

Prof. of Microbiology, Microbiology Department Faculty of Agriculture, Ain Shams University

Prof. Salama A. Ouf
Prof. of Microbiology, Botany Department
Faculty of Science, Cairo University

Prof. Al zahraa Karam El-Din
Prof. of Mycology and Medical Mycology
Microbiology Department, Faculty of Science,
Ain Shams University

Prof. Yousseria M. Hassan Shetaia
Prof. of Mycology, Microbiology Department,
Faculty of Science, Ain Shams University

/ / 2015 / / 2015

Approved of University

بسم الله الرحمن الرحيم

الله نُورُ السَّمَاوَاتِ وَالأَرْضِ مَثَلُ نُورِهِ
كَمِشْكَاةٍ فِيمَا مِصْبَاحٌ الْمِصْبَاحُ فِي رُبَاجَةٍ
الزُّبَاجَةُ كَأَنَّمَا كَوْكَبَّ دُرِّيُّ يُوقَدُ مِن شَبَرَةٍ مُّبَارَكَةٍ زَيْتُونَةٍ لاَ شَرْقِيَّةٍ وَلاَ غَرْبِيَّةٍ
شَجَرَةٍ مُّبَارَكَةٍ زَيْتُونَةٍ لاَ شَرْقِيَّةٍ وَلاَ غَرْبِيَّةٍ
يَكَادُ زَيْتُمَا يُضِيءُ وَلَوْ لَوْ تَمْسَسُهُ نَارٌ نُورُ
يَكَادُ زَيْتُمَا يُضِيءُ وَلَوْ لَوْ تَمْسَسُهُ نَارٌ نُورُ
عَلَى نُورٍ يَمْدِي الله لِنُورِهِ مَن يَشَاءُ وَيَضْرِبِكُ
الله الأَمْثَالَ لِلنَّاسِ وَالله بِكُلِّ شَيْءٍ عَلِيمٌ
الله الأَمْثَالَ لِلنَّاسِ وَالله بِكُلِّ شَيْءٍ عَلِيمٌ

صدق الله العظيم سورة النور الايه رقم ٣٥-٣٦

ر هر د ک

(ال و (الري

(فيب . . .)

و (را در می دانغالیت...

Acknowledgment

At first, I would like to thank ALLAH that allowing me to achieve this work, without his bless any great effort is invaluable.

The author wishes to express her deepest gratitude and sincere thanks to *Prof. Elzahraa Karam El-Din* Professor of Microbiology in Microbiology Department, Faculty of Science, Ain shams University for their supervision, guidance and valuable directions and advices throughout the whole work.

I would like to express my sincere gratitude to principal supervisor *Prof. Yousseria M. Shetaia* Professor of Microbiology in Microbiology Department, Faculty of Science, Ain shams, for her invaluable advice and precious guidance during the progression of this work.

I wish to express my deepest gratitude to *Prof.* Samira S. Mohamed Prof. of fats and oils, National Research Center. for sharing his vast knowledge and experience, advice and precious guidance during the progression of the work.

I wish to express my deepest gratitude to *Prof.* Ateff S. Osheba Prof. of Food Technology Research Institute, Agricultural Research Center, for sharing his vast knowledge and experience, advice and precious guidance during the progression of this work and of the facilities offered to accomplish this work.

The author wishes to express her thanks to *Dr.* Hoida A. Mohamed Assistant Prof. of Dairy microbiology, Food Technology Research Institute, Agricultural Research Center, for the offered facilities to accomplish and complete this work.

Also, special thanks should be expressed to all member-staff in the Food Technology Research Institute, Agricultural Research Center for their encouragement and help with special thanks to quality control laboratory.

Finally, special thanks to my family for their never – ending love and support, I am most grateful to my husband together with sons (*Eyad and youssef*) whom made my work possible.

Dedication

To my parents

That seeded my curiosity and desire for knowledge and thanking them for their unlimited effort and invocation that is unquestionable honored.

To my husband
To my sons

EYAD & YOUSSEF

To my Sister and Brothers

Abstract

Okara is the residue obtained from ground soybean after removing the water- extractable fraction used to produce to fu or soymilk. The aim of this study was to evaluate the potential use of okara and to improve the health beneficial properties of soybean waste manufacture product (Okara).

In this study, three fungal isolates were isolated and subjected to the assessment of okara to prove their virulence of pathogenicity, only one fungal isolate was found to be non-toxic and safe to use, this fungal isolate was identified as Trichoderma harzianum using traditional mycological method of identification and nucleotide sequence analysis of the inter transcribed spacer region. The screening for the production of antioxidant using okara as substrate was carried out using Trichoderma harzianum in addition to a previously provided isolate of Aspergillus oryzae. The antioxidants were produced by solid-state fermentation using different solvents (water, ethanol, methanol, acetone and diethyl ether) for extraction of antioxidants in a period of 10 days. In comparison with non- fermented okara, the protein and ash contents increased in all fermented okara samples than nonfermented one; the level of protein increased from 6.2 to 11.1% and from 6.0 to 10.1% using Aspergillus oryzae and Trichoderma harzianum, respectively. Also, the ash contents increased from 1.03 to 2.6% and from 0.72 to 1.6% using Aspergillus oryzae and

Trichoderma harzianum. While, the fat content reduced from 3.0 to 1.4% and from 3.1 to 1.3 %, using Aspergillus oryzae and Trichoderma harzianum, crude fiber content reduced from 3.4 to 1.5% and from 3.3 to 1.43 %, using Aspergillus oryzae and Trichoderma harzianum, respectively.

The water extract of the antioxidants revealed a significant increase in the total phenolic compounds ranged from 9.2 to 43.8 mg gallic/g of okara after 5 days of fermentation using Aspergillus oryzae, while the total phenolic compounds increased from 6.5 to 27.2 mg gallic/g of okara using Trichoderma harzianum. The extraction with diethyl ether revealed the lowest content of total phenolic compound which ranged from 1.5 to 8.7 mg gallic/g of Aspergillus oryzae after five days of fermentation. By using DPPH assay and their reducing power the antioxidants activity reveald an increase in all fermented okara samples in comparison with non- fermented one. The HPLC analysis of the water and ethanol extracts of the fermented okara using Aspergillus oryzae reveald a higher content of phenolic water extract; the cholorogenic (60117.6 compounds in mg/100g), caffeine (67876.86 mg/100g) and coumarin (45940.7 mg/100g). Also, the fermented okara with Aspergillus oryzae had a higher content of isoflavons in water extract ;formentin(863.9 mg /100g),then genistein (434.7 mg /100g) and diadzein(476.1mg /100g), but in ethanol extract the biochanin was the highest

(831 mg /100g) ,followed by genistein(537.9 mg /100g) and diadzein (517.7 mg /100g). The antimicrobial activity of the fermented okara extracts using *Aspergillus oryzae* and *Trichoderma harzianum*, revealed a remarkable inhibition against all the tested and pathogenic bacterial and fungal species, using disc diffusion method. The assessment of the stability of phenolic extracts in fermented, non fermented okara, BHT and control was carried out on beef burger, the results revealed efficiency of the fermented okara.

Water & ethanol extracts of fermented okara using Aspergillus oryzae have been chosen and evaluated as a chemopreventive agent. Water extract of the fermented okara using Aspergillus oryzae was the most effective on Colon Carcinoma and Breast Carcinoma cell line, while the ethanol extracts of the fermented okara using Aspergillus oryzae was the most effective on Prostate cell line.

Key words: - Okara *–Aspergillus oryzae –Trichoderma harzianum* - phenolic compounds - reducing power –antioxidants - cell line – beef burger.

LIST OF ABBREVIATIONS

°C	Degree celsius
AOAC	Association of Official Analytical Chemists,
APHA	American Public Health Association
ABTS	2,2 azinobis 3,3 ethylbenzothiozoline 6-sulfonic acid
ANOVA	Analysis of Variance
AOA	Applied to asses
AS	Absorbance of sample
A St	Absorbance of standard
ВНА	Butylated hydroxyl anisole
ВНТ	Butylatedhydroxyrotoluene
BLAST	Basic local alignment search tool
CFU	Colony forming unit
DPPH	2,2diphenyl -1,picrylhydrazyl
EFOA	Ethanol extract of fermented okara with Aspergillus
	oryzae
EFOT	Ethanol extract of fermented okara with
	Trichoderma haraziaum
ENF	Ethanol extract of non fermented okara
FAO	Food and Agricultural Organization
FC	Folin-Ciocalteau
g	gram
GRAS	Generally recognized as safe
НСТ	Colon Carcinoma Cell Line

HPLC	High performance liquid chromatography
hr	Hour
Ιμ	Microliter
i TOL	interactive tree of life
Kg	Killogram
LSD	Least Significant differences
m	mass of sample
m.equiv./kg	Milli Marketing/Kilogram
MCF7	Breast Carcinoma Cell Line
mg	Milli gram
mins	Minutes
MIRCEN	Microbial Resource center
mm	Mill meter
Mmol/I	Mill mole
N	Normility
NDGA	Nordihydroguaretic acid
NCBI	National center for biotechnology information
nm	Nano meter
P.V	Peroxide value
PC3	Prostat Carcinoma Cell Line
PDA	potato dextrose agar
PG	Propylgallate
pH	Potential hydrogen
ppm	Part per million

SD	standard deviation
SDS	sodium dodecyl sulphate
SLF	Submerged liquid fermentation
SRB	sulfo-rhodamine – B stain
SSF	Soild State fermentation
T.B.A	thiobarbituric acid value
T.V.B.N	total volatile bases nitrogen
ТВНО	Tertiary butyl hydroquinone
TCA	Trichloroacetic acid
TFS-M	Total phenolic content in methanol extract
TFS-W	Total phenolic content in water extract
TPC	total phenolic content
UFS	un fermented soybean
USDA	United States Department OF Agriculture
V	Volume
WFOA	water extract of fermented okara with Aspergillus
	oryzae
WFOT	water extract of fermented okara with
	Trichoderma haraziaum
WNF	water extract of non fermented okara

CONTENTS

Content	
List of Table	
List of Figures	XI
Introduction	1
Aim of work	3
Review of Literature	4
1.1 History and consumption of soy foods	4
1.2 Nutritional benefits of soy foods	5
1.3 Okara	7
1.3.1 History of okara	8
1.3.2 Chemical composition of okara	10
1.3.3 Nutritional application of okara	12
a- Animal feed	12
b- Fermentation substrate	12
c- Fertilizer	12
d-Pet food	12
f-Food product	13
1.4 Fermentation	13
1.4.1 Solid state fermentation	15
1.4.2 Health benefits of fermented foods	16
1) Probiotic effect	16
2) Anticholesterolemic effect	16
3) Anticarcinogenic effect	17

Content	Page
4) Reduction of toxins	17
1.4.2 Nutritional value of fermented foods	17
1.4.3 Effect of fermentation on antioxidant	18
1.5 Polyphenolic compound and Isoflavones	20
1.5.1-Health benefits of Polyphenolic compound	25
a - Antibacterial activity	25
b-Antimutagenic/anticarcinogenic properties	25
c- Antidiabetic effects	26
1.6 Antioxidant compounds	26
1.6.1 Classification of antioxidants	27
1.6.2 Characteristics of antioxidants	28
1.6.3 Medicinal application of antioxidants	29
1.7 Antimicrobial activity of phenolic extract	30
1.8 Application of stability of phenolic extracts on beef	31
burger	
1.9 Natural phenolics and Cancer	35
1.9.1 Soybean and cancer	36
a- Breast cancer	37
b-Colon cancer	38
c- Prostate cancer	38
2- Materials and Methods	42
2.1 Materials	42
2.2 Microorganisms	42