

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Computer Engineering and Systems

Automatic Segmentation Of Small Vascular Structures in 3D Medical Images

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering

(Computer Engineering and Systems)

by

Yusuf Ibrahim Yusuf Afifi

Bachelor of Science in Electrical Engineering (Computer Engineering and Systems) Faculty of Engineering, Ain Shams University, 2009

Supervised By

Prof. Hazem Abbas

Dr. Mahmoud Ibrahim Khalil

Cairo - (2016)

FACULTY OF ENGINEERING

Computer and Systems

Automatic Segmentation Of Small Vascular Structures in 3D Medical Images

by

Yusuf Ibrahim Yusuf Afifi

Bachelor of Science in Electrical Engineering

(Computer Engineering and Systems)

Faculty of Engineering, Ain Shams University, 2009

Examiners' Committee

Name and Affiliation	Signature
Prof. Ayman Mohamed Mohamed Ibrahim Eldeib	
Computer and Systems , Cairo University	
Prof. Hussein Ismail Shahein	
Computer and Systems , Ain Shams University	
Prof. Hazem Mahmoud Abbas	
Computer and Systems , Ain Shams University	
Dr. Mahmoud Ibrahim Khalil	
Computer and Systems , Ain Shams University	

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Yusuf Ibrahim Yusuf Afifi

Signature

Date:11 April 2016

Researcher Data

Name : Yusuf Ibrahim Yusuf Afifi

Date of birth : 25 / 6 / 1987

Place of birth : Cairo

Last academic degree : Bachelor of Electrical Engineering

Field of specialization : Computer and Systems Engineering

University issued the degree: Ain Shams University

Date of issued degree : 2009

Current job : Software Development Team Leader

Acknowledgments

I would like to thank the many people who have helped me through the completion of this dissertation. First my advisors, Prof. Hazem Abbas and Dr. Mahmoud Khalil for their support for my ideas and their technical insight.

I owe a great debit to Dr. Mahmoud Morshed too. He was the one to first present this challenge to me. This encouraged me to extensively research the topic.

I would like also to thank my family: my late father, my mother and my sister. Their utmost believe in me was always a great motivation in all my studies. I dedicate this thesis to the memory of my father. He didn't witness my first academic accomplishment, but always believed I can do great things.

This last word of acknowledgment I have saved for my dear wife Maha Mousa, her support, encouragement and sacrifice during the years of study and research are the main reasons this work came to light.

Yusuf Afifi Cairo, Egypt April 2016

Abstract

The automation of the blood vessel segmentation is a very helpful tool to aid the doctors in the diagnostic process. In this thesis, the segmentation of vascular structures in 3D medical images (CTA and MRA) is discussed. Many methods for vessel segmentation and tracking is discussed and reviewed in detail. A new approach for fast tracking, quantization and centreline extraction of small vascular structures is introduced, with the problem of coronary arteries segmentation used as an example.

The main purpose here is to achieve near interactive vessel segmentation process that is accurate and does not miss smaller vessels even in a noisy environment. This is achieved by propagating an explicit surface in a vessel tracking manner. This surface is represented as a triangular adaptive mesh where the element size is adjusted based on the current size of the vessel. Adaptive re-meshing is performed on—the—fly during propagation in an efficient manner. An effective self-intersection prevention method is introduced to address one of the major issues in triangular mesh offsetting.

The algorithm was compared to many state of the art methods in vessel tracking and showed great accuracy and low miss rate of smaller vessels in the coronary tree while performing the whole operation in less than a minute.

Keywords:

Segmentation, Vessels, Tracking, Active contours, Explicit Surface, Vessel Contrast Enhancement, Coronary Arteries

Contents

Ι	In	troduction	11				
1	Dat	tasets Characteristics and Visualization					
II	P	Previous Work	2 9				
2	Reg	gion-based Approaches	31				
	2.1	Region Growing	31				
	2.2	Vessel Enhancement	37				
		2.2.1 Vesselness Filter	37				
		2.2.2 Diffusion	41				
		2.2.3 Perona-Malik Model	42				
		2.2.4 Vessel Enhancement Diffusion	47				
		2.2.5 Conclusion	52				
3	Fro	nt Propagation Approaches	55				
	3.1	Parametric Deformable Models	57				
		3.1.1 Numerical Implementation	63				
	3.2	Geometric Deformable Models	69				
		3.2.1 Curve Evolution	70				
		3.2.2 Curve Evolution Techniques	73				
		3.2.3 Numerical Implementation	81				
	3.3	Front Propagation For Vessel Segmentation	84				
4	Ves	sel Tracking	95				
	4.1	Region Growing on a 2D plane	96				
		4.1.1 Multiple Points Extrapolation	97				
		4.1.2 Spherical Surface Region Growing	101				
	4.2	Medialness on a 2D plane	102				
	4.3	Region Growing in 3D	105				
	4.4	Template Matching	108				

		4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6	The Template Function	110 111 113 113
ΙΙ	I	Propo	osed Method	117
5	Ves	selness	s Filter	121
	5.1	Introd	$\operatorname{luction}$	121
	5.2	Struct	cure Tensors	125
	5.3	Propos	sed Vessel Enhancement Filter	128
	5.4	Evalua	ation and Results	133
6	Pro	\mathbf{posed}	Vessel Tracking	137
	6.1	Auton	natic Seeding	138
		6.1.1	Ascending Aorta Detection	138
		6.1.2	Seed Placement	140
		6.1.3	Evaluation	142
	6.2	Tracki	ing Process	143
		6.2.1	Surface Propagation	144
		6.2.2	Sub-mesh	146
		6.2.3	Sub-mesh Tracking	147
	6.3	Center	rline Extraction	
		6.3.1	Centerline Extraction Algorithm	
		6.3.2	Reverse Region Growing	
		6.3.3	Anchor points calculation	
	6.4	Self-in	itersections	
	6.5		ation	
		6.5.1	Evaluation Framework	
		6.5.2	Results	
7	Con	clusio	n and Future Work	187

List of Figures

1	Acute myocardium infarction	14
2	Vessel anomalies, showing calcified plaque, a stenosis and a	
	stent	16
1.1	Comparison of the density intervals of different tissues in Hounsfie	ld
	units (HU)	20
1.2	An axial image slice of a coronary CTA dataset	20
1.3	Orthogonal MPR	21
1.4	Thin-slab MPR	22
1.5	Cross-sectional oblique MPR	23
1.6	A demonstration of the CPR principle	23
1.7	Different CPR generation methods	24
1.8	Stretched CPR view of the right coronary artery of a sample	
	dataset	25
1.9	Maximum intensity projection	26
1.10	Direct Volume Rendering of 2 different datasets	27
1.11	Direct Volume Rendering of an isolated heart CTA	28
1.12	MIP rendering of segmented coronary tree of an isolated heart	
	CTA	28
2.1	Simple demonstration of the region growing algorithm	32
2.2	The segmented region over multi-threshold values and the	
	threshold-volume curve	33
2.3	Local cube tracking	34
2.4	Expansion of the local cube for regions with abrupt changes	35
2.5	Examples of connected component labeling on sample cubes .	36
2.6	Successful isolation of the vessel from nearby structures	37
2.7	Region Growing coupled with bifurcation detection based on	
	connected component analysis	38
2.8	Second order derivative of a Gaussian kernel	39
2.9	Examples of 2D Derivatives of Gaussian kernels	39
2.10	Examples of vesselness measure calculated at different scales .	42