Stem Cell Therapy in Surgical Practice

An Essay
Submitted for partial fulfillment of master degree in general surgery

By
Mohamed Mohamed Saeed Mady
Faculty of medicine – Cairo University
MB.B.CH. 2007

Under supervision of

Professor Dr./ Ayman Ahmed Albaghdady

Professor of pediatric surgery
Faculty of medicine – Ain Shams University

Dr./ Wael Ahmed Ghanem

Lecturer of pediatric surgery
Faculty of medicine – Ain Shams University

Dr./ Ahmed Bassiouny Arafa

Lecturer of pediatric surgery
Faculty of medicine – Ain Shams University

Faculty of medicine Ain Shams university 2015

اية ()

Acknowledgement

First of all, thanks to **Allah** to whom I relate any success in achieving any work in my life.

I would like to express my sincere gratitude to **Professor Dr. Ayman Ahmed Albaghdady,** Professor of pediatric surgery, Faculty of medicine - Ain Shams University; I have the honor to work under his supervision and for his encouragement, support and helpful advice.

I am very grateful to **Dr. Wael Ahmed Ghanem**, Lecturer of pediatric surgery Faculty of medicine – Ain Shams University; for his guidance, advice and constant help in this work.

No words can express my deep gratitude for **Dr. Ahmed Bassiouny Arafa** Lecturer of pediatric surgery Faculty of medicine – Ain Shams University; for his kind supervision, encouragement and continuous support. He had really offered me much of his time and experience.

I would like to thank my **Mother, Father** and my **Brothers** for their support and dedicate this Essay to them.

Very special thanks to my beloved **Wife** for sharing my life and my success and for her encouragement and continuous support.

List of contents

Pages

List of Abbreviations	i
List of Figures	iv
Introduction	1
Aim of the Work	4
Properties of Stem Cells	5
Types and sources of Stem Cells	7
Isolation and culturing of stem cells	.19
Role of stem cells in various surgical fields:	
A- Gastrointestinal Dicorders	29
B- Urinary Disorders	39
C- Musculoskeletal Disorders	44
D- Endocrinal Disorders	54
E- Organ Transplantation	59
F- Plastic surgery	70
Summary	87
- References	
- Arabic Summary	
	List of Figures Introduction

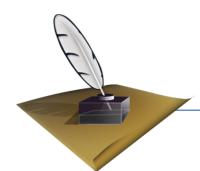
List of Abbreviations

ACL	Anterior cruciate ligament
ADSCs	Adibose tissue-derived stem cells
AFDSCs	Amontic fluid derived stem cells
AFI	Autologous fat injection
AHSCT	Autologous human stem cells transplantation
AKI	Acute kidney injury
AT	Adipose tissue
BM	Bone marrow
BMP	Bone morphogenetic protein
BMSCs	Bone marrow stem cells
BMSCs	Bone marrow mesenchymal stem cells
CAL	Cell assisted lipotransfer
СВ	Cord blood
CBC	Crypt base columnar
CD	Crohn's disease
CFU – ECs	Colony-forming unit embryonic cells
CLI	Critical limb ischemia
CSCs	Cardiac stem cells
CY	cyclophosphamide
DM	Diabetes mellitus
ECFCs	Endothelial colony forming cells
EG	Embryonic germ
EPC	Endothelial progenitor cells
EPCs	Endothelial progenitor cells

List of Abbreviations (cont...)

ESCS	Embryonic stem cells
G-CSF	Granulocyte colony stimulating factor
GVHD	Graft-versus-host disease
HASC	Human adibode tissue-derived stem cells
HDAC	Histone deacetylase
HEMSCs	Hemangioma-derived stem cells
hESCs	Human embryonic stem cells
HGF	Hepatocyte growth factor
HPCs	Hepatic progenitor cells
HSCs	Hematopoietic stem cells
HSCT	Hematopoietic stem cell therapy
IBD	Inflammatory bowel disease
IH	Infantile hemangioma
IMD's	Immune mediated diseases
IPSCs	Induced pluripotent stem cells
IRI	Ischemia-reperfusion injury
ISCs	Intestinal stem cells
LSCs	Limbal stem cells
MEFs	Mouse embryonic fibroblasts
Mi RNA	Micro RNA
MSCs	Mesenchymal stem cells
OA	Osteoarthritis
PAD	Peripheral arterial disease
PGCs	Primodrial germ cells
POF	Premature ovarian failure

List of Abbreviations (cont...)


PSCs	Pancreatic stem cells
RA	Rhematic arthritis
RBC	Red blood cells
ROS	Reactive oxygen species
SBS	Short bowel syndrome
SUI	Stress urinary incontinence
SVF	Stromal vascular fraction
TESE	Testicular sperm extraction
TGF	Transforming growth factor
UC	Ulcerative colitis
UCB	Umbilical cord blood
VEGF	Vascular endothelial growth factor
VISA	Victorian institute of sport assessment
WBC	White blood cells

List of Figures

Figure No.	Title	Page No.
1	Stem cell therapy	1
2	Features of Stem cells	5
3	Showing origin of embryonic stem cells	8
4	The site from which embryonic germ cells are derived	9
5	Sources of adult stem cells	10
6	Hematopoietic stem cells can give rise to all types of blood cells	11
7	A cross section of the human skin. Epidermal stem cells are found in the basal layer and in the bulge region	14
8	Schematic drawing illustrating sources of human dental tissue-derived MSCs.	17
9	Flow cytometry and cell sorting	21
10	Prepairing of induced pleuripotent stem cells using virus mediated transfection	22
11	Preparing pluripotent stem cells using somatic cell transfer	24
12	Preparation of mitotically inactivated mouse embryonic fibroblast (MEF) cells for use as feeder cells	26
13	Schematic of intestinal structure and epithelial cell types	29
14	schematics of the small intestine tissue engineering	32
15	Autologous stem cell injection therapy for stress urinary incontinence	43
16	Schematic diagram showing how multipotent mesenchymal stem cells (MSCs) can differentiate into musculoskeletal cell lines	44
18	h	1.0
17	bone marrow aspiration under local anaesthesia	46
18	One potential clinical application of stem cell technology for tendon repair	51

List of Figures (cont...)

19	Schematic outlining the role of satellite cells during	52
	muscle regeneration. In response to an injury	
20	Breast augmentation by transplantation of adipose	71
	tissue-derived stem cells	
21	Effect of using stem cells in facial rejuvenation	73
22	Wound healing with adipose-derived stem cell therapy	77
23	Schematic representation of in vitro endothelialisation	86
	process of artificial vascular grafts	

Introduction

Introduction

Regeneration of damaged adult tissues requires the existence of cells capable of proliferation and differentiation that will contribute functionally to the reparative process of a tissue. The field of regenerative medicine and tissue engineering holds promise in treating these conditions, especially with the renewed impetus that has arisen from the discovery of stem cells. The addition of stem cells to our regenerative medicine armamentarium has opened up new avenues with the potential for developing stem cell-based therapies for the treatment of these conditions (McArdle et al., 2013).

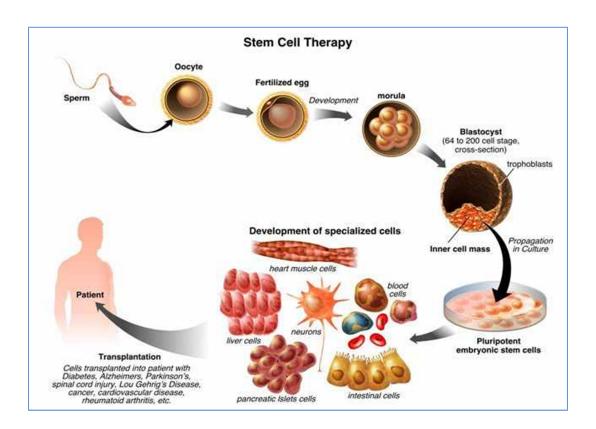


Fig. (1): Stem cell therapy (Kang et al., 2013).

Stem cells are the body's "master" cells. They have two unique abilities: They can proliferate virtually without limit to produce an essentially infinite supply of their unspecialized cellular selves, and they can differentiate to produce any other cell types that can be used to repair or replace worn-out or damaged tissues. Combine those two superpowers, and you have got the proverbial medical magic bullet – somewhat like having a box of elastic bandages in your medicine cabinet that always replenishes itself, always comes in exactly the right size for your needs and doesn't just cover a cut but can regrow the injured skin (McQueen, 2013).

Stem cells are essential during development and in adulthood in most multicellular organisms, as they are responsible for the generation of tissue-specific cell types. Stem cells are uncommitted cells with the potential to form one, many or all cell types present in an organism. They self-renew and, in adult animals, are able to adapt to changing physiological conditions, to respond to tissue damage and to replenish the host tissue (**Rojas-Rios** and Gonzalez-Reyes, 2013).

Recent advances in stem cell research have generated much excitement over their potential therapeutic applications. Stem cells can be introduced into organs or tissues to replace diseased or damaged cells with minimal risk of rejection and side effects (**Kang et al., 2013**).

The use of stem cells in treatment of disease continues to develop in many areas and there have been some successful applications of treatments derived from them. It is important to be aware that responsible researchers are careful to explain that some of these treatments are not yet universally applicable, but are still classified as experimental. More evidence is needed, but there is general optimism about their expanded use in the immediate future as well as in the long term (McQueen, 2013).

Aim of The Work

The aim of this work was to study the role of stem cell therapy in different branches of surgery.