

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المناد الم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة ثالفة

Effect of Polymerization Mode of Composite Core on Mechanical Properties and Stress Distribution on Restored Endodontically Treated Teeth

Master Thesis Submitted to Faculty of Oral and Dental Medicine, Cairo University for Partial Fulfillment of Requirements for Master Degree in Fixed Prosthodontics

By

Noha Adel El-Khodary

BDS (2004)

Crown and Fixed Prosthodontics Departement
Faculty of Oral and Dental Medicine
Cairo University

2011

CHIVE

Supervisors

Dr. Shereen Adel Ameen

Assistant professor of Crown and Fixed

Faculty of Oral and Dental Medicine
Cairo University

Prof. Dr. Ahmed Farghaly Mohamed

Professor of Crown and Fixed Prosthodontics Departement

Faculty of Oral and Dental Medicine Cairo University

Acknowledgements

ACKNOWLEDGEMENTS

Great thankfulness to *ALLAH* for supporting me to finish this work.

My sincerest gratitude to Dr.Shereen Adel Ameen, Assistant Professor of Crown and Fixed Prosthodontics department, Faculty of Oral and Dental Medicine, Cairo University for her great help, valuable advices, orientation, continuous effort and kind care.

I wish to thank Dr. Ahmed Farghaly Mohamed Professor of Crown and Fixed Prosthodontics department, Faculty of Oral and Dental Medicine, Cairo University, for his considerable support, valuable supervision and help.

I would like also to express my gratefulness and appreciation to Dr. Ahmed Fouad EL-Ragy, Lecturer, Civil Engineering Department, Faculty of Engineering, Fayoum University, for his efforts to facilitate the finite element analysis part of this study.

I would like to express my deepest appreciation to Dr. Mohamed Abbas, Lecturer of Dental Materials

Department, Faculty of Dental Medicine, Alazhar University, for his continuous assistance and cooperation.

I would like to thank Dr. Ehab Elsaid Mosleh Professor and chairman of Crown and Fixed Prosthodontics department, Faculty of Oral and Dental Medicine, Cairo University, for his guidance and encouragement which were always valuable to me.

I would not forget to thank the stuff members of Crown and Fixed Prosthodontics Department, Faculty of Oral and Dental Medicine, Cairo University for their great help and cooperation.

Last but not least, I would like to express my gratefulness to my parents though no words can express how grateful and thankful I am to them for their great help and support in every step in my life.

I would never forget to thank my husband who was always supporting and encouraging me in my work.

List of contents

	Page
Introduction	1
Review of literature	3
Aim of the study	26
Materials and methods	27
Results	67
Discussion	88
Summary and conclusions	96
References	99
Arabic summary	

List of Tables

Table No.	Description	Page NO.
1	Materials used in this study	· 27
2	Grouping of specimens	29
3	Material properties used in finite element models	60
4	Descriptive statistics of different mechanical properties measured in MPa for both core materials	68
5	Student t-test comparison between flexure strength mean value of dual cured and light cured groups	70
6	Student t-test comparison between diametral tensile strength mean value of dual cured and light cured groups	71
7	Student t-test comparison between compressive strength mean value of dual cured and light cured groups	73
8	Student t-test comparison between fracture resistance mean value of teeth restored with dual cured and light cured groups	74

List of figures

Figure No.	Description	Page No.
1	Build-IT core material Light cure (c ₁)	30
2	Build-IT core material Dual cure (c ₂)	31
3	Mold specially constructed to measure Flexure strength	34
4	Specimen used for flexure strength measurement on universal testing machine	35
5	Mold specially constructed for Diametral tensile measurements	38
6	Disc specimen used for Diametral tensile strength measurement on the testing machine	39
7	Mold specially constructed for compressive strength measurements	40
8	Specimen used for Compressive strength measurement on the testing machine	41
9	Root canal sealer used for obturation of root canal	43
10	Parallelometer used for insertion of tooth in acrylic block	45

11	Glass fiber post and its corresponding drill	48
12	Core former used for core build up	49
13	Counter die	54
14	Prepared core sprayed with intra cerec powder	55
15	CAD-CAM machine (Cerec 3-D machine)	56
16	Extra coronal cemented resin restoration	57
17	Position of specimen block in a special holder in the testing machine	58
18	Application of load on the extra coronal restoration at 135° on the palatal surface	59
19	Distribution of nodes used in finite element analysis	61
20	Nodes and elements used in finite element analysis	62
21	Nodes and elements used in finite element analysis for tooth and resin block	63
22	Elements and nodes of tooth alone and tooth in resin block	64
23	Nodes and elements after post cementation	65

. . .

24	Nodes and elements of prepared core after post cementation	65
25	Nodes and elements in the whole assembly	66
26	Adhesive cohesive fracture pattern at cervical area and the loaded area	76
27	Fracture of crown, core and coronal part of post	77
28	Oblique fracture pattern at cervical area	77
29	Tensile stress (S1) distribution along the post	80
30	Compressive stress (S3) distribution along the post	80
31	Tensile stress (S1) distribution along light cure core materials	81
32	Tensile stress (S1) distribution along dual cure core materials	82
33	Compressive stress (S3) distribution along light cure core material	83
34	Compressive stress (S3) distribution along dual cure core material	84
35	Tensile stress distribution (S1) along extracoronal restoration	85
36	Compressive stress distribution (S3) along extracoronal restoration	85

. . .

37	Tensile stress (S1) distribution of light cure core along the whole assembly	86
38	Tensile stress (S1) distribution of dual cure core along the whole assembly	86
39	Compressive stress (S3) distribution of light cure core along the whole assembly	87
40	Compressive stress (S1) distribution of dual cure core along the whole assembly	87

. . .