

DIFFERENTIAL GEOMETRIC GUIDANCE AND CONTROL SYSTEMS OF TACTICAL HOMING MISSILES AND AIR DEFENSE SYSTEMS

By Yunes Sharaf N. Al-Qadasi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> MASTER OF SCIENCE in Aerospace Engineering

DIFFERENTIAL GEOMETRIC GUIDANCE AND CONTROL SYSTEMS OF TACTICAL HOMING MISSILES AND AIR DEFENSE SYSTEMS

By **Yunes Sharaf N. Al-Qadasi**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> MASTER OF SCIENCE in Aerospace Engineering

Under the Supervision of

Prof. Dr. Gamal M. El-Bayoumi	Dr. Osama S. Mohamady
Professor of Flight Mechanics and Control	Assistant Professor
Aerospace Engineering department	Aerospace Engineering department
Faculty of Engineering	Faculty of Engineering
Cairo University	Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

DIFFERENTIAL GEOMETRIC GUIDANCE AND CONTROL SYSTEMS OF TACTICAL HOMING MISSILES AND AIR DEFENSE SYSTEMS

By Yunes Sharaf N. Al-Qadasi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Aerospace Engineering

Approved by the Examining Committee:	
Prof. Dr. Gamal M. El-Bayoumi Professor of Flight Mechanics and Control	(Thesis Main Advisor)
Prof. Dr. Ayman Hamdy Kassem Professor and head of Aerospace Engineering Dep	(Internal Examiner) ot.
Prof. Dr. Yahya Zakaria El-Halwagy Professor at Military Technical College	(External Examiner)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Engineer's Name: Yunes Sharaf Noman Al-Qadasi

Date of Birth: 15 / 02 / 1991 **Nationality:** Yemeni

E-mail: yunes.sharaf@pg.cu.edu.eg

Phone: 01118130228

Address: Giza - Egypt

Registration Date: 01 / 10 / 2015

Discussion Date: 11 / 12 / 2017

Awarding Date: ... / ... / 2018

Degree: Master of Science

Deposits on the street of Science Agreement of Science

Department: Aerospace Engineering

Prof. Dr. Gamal M. El-Bayoumi Dr. Osama S. Mohamady

Examiners:

Prof. Dr. Yahya Zakaria El-Halwagy (External examiner)
Professor at Military Technical College

Prof. Dr. Ayman Hamdy Kassem (Internal examiner)
Prof. Dr. Gamal M. El-Bayoumi (Thesis main advisor)

Title of Thesis:

DIFFERENTIAL GEOMETRIC GUIDANCE AND CONTROL SYSTEMS OF TACTICAL HOMING MISSILES AND AIR DEFENSE SYSTEMS

Key Words:

Homing Guidance; Differential Geometry; Air Defense Systems (ADS); Target Interception; Line-of-Sight (LOS).

Summary:

The concepts of differential geometric control theory provide useful tools of modelling, analysis and design for the nonlinear guidance and control systems.

In order to obtain better control, precise accuracy and flexibility for the intercept and engagement trajectories for homing missiles guidance and control systems geometrical approach and Lyapunove theory are used. The differential geometric approach is more generalized guidance algorithm, which deals directly with the system's nonlinearities which improves the algorithm accuracy, at the same time, differential geometry techniques consider the curved and straight-line trajectories for both the targets and missiles. Furthermore, the concepts of differential geometry assist to develop an optimization algorithm for the guidance and control of homing missiles and Air defense systems.

Acknowledgments

Firstly, I would like to express my sincere appreciation to my supervisor, Prof. Dr. Gamal M. El-Bayoumi. Professor of Aerospace Engineering at Cairo University, for his helpful suggestions, prompt feedback, endless supporting, constant guidance and motivation leading to complete my master thesis. I am grateful to him for everything he taught me and for everything he has carried out for me.

I would also extend my thanks to Prof. Dr. Ayman H. kassem the head of aerospace dept., Prof. Dr. Yahya Z. El-Halwagy and Dr. Osama S. Abd El-Razek for their constructive notes and comments aiming to improve the output of this thesis. Special thanks for Dr. Haithem E. Taha for his general lecture about the Differential Geometric Control theory which it was one of the reasons that caught our attention to start thinking about the possibility to develop a guidance algorithm utilizing the differential geometry concepts.

I also dedicate this thesis to my beloved parents, Sharaf and Jamila, and special thanks to my wife "Jory" for their endless support, patient and understanding, they really were essential assist to achieve this work. Also for my angel baby "Rahof" the additament happiness to my life.

Dedication

To

My Parents My Wife

and

My Daughter (Rahof)

Table of Contents

ACKNO	OWLEDGMENTS	I
DEDIC	ATION	. III
TABLE	OF CONTENTS	V
LIST O	F TABLESV	/III
LIST O	F FIGURES	.IX
NOME	NCLATURE	.XI
ABSTR	ACT	XV
СНАРТ	ER 1: INTRODUCTION AND LITERATURE REVIEW	1
1.1.1.2.1.3.	INTRODUCTION	4
1.3.1.	GUIDANCE PHASES	5
1.3.2.	HOMING GUIDANCE TYPES	5
1.4. 1.5.	DIFFERENTIAL GEOMETRIC TOOLS AND GUIDANCE ALGORITHM	
СНАРТ	ER 2: MISSILE SEEKER AND HOMING TRACKING SYSTEM	9
2.1.2.2.2.3.	INTRODUCTION	.10 .13
	ER 3: THE HOMING MISSILE GUIDANCE SYSTEM	
3.1.3.2.3.3.	INTRODUCTION	.17
3.3.1.	SCENARIO#1: INTERCEPTING OF NONMANEUVERING TARGETS	. 19
3.3.1.1.	DIRECT INTERCEPT GEOMETRY OF NONMANEUVERING TARGET	.19
3.3.1.2.	THE GUIDANCE LAW FOR THE 1ST INTERCEPTING SCENARIO	.21
3.3.2.	SCENARIO#2: INTERCEPTING OF CONSTANT MANEUVERING TARGETS	.23
3.3.2.1.	MANEUVERING INTERCEPT GEOMETRY OF MANEUVERING TARGET	.23
3.3.2.2.	THE GUIDANCE LAW OF THE 2 ND INTERCEPTING SCENARIO:	.26
3.3.3.	SCENARIO#3: INTERCEPTING OF VARIABLE MANEUVERING TARGETS.	.27
3.3.3.1.	INTERCEPTING OF VARIABLE MANEUVERING TARGETS	.27
3332	THE GUIDANCE LAW OF THE 3RD INTERCEPTING SCENARIO	28

CHAP	TER 4: ENGAGEMENT GEOMETRY AND OPTIMIZATION	29
4.1.	Introduction	29
4.2.	THE ENGAGEMENT GEOMETRY OF HOMING GUIDANCE	
4.3.	OPTIMIZATION OF THE MISSILE'S HEADING ANGLE AND THE VELOCITY RATIO	33
4.3.1.	CONSTANT VELOCITY RATIO WITH VARIABLE TARGET'S ANGLE	.33
4.3.2.	CONSTANT TARGET'S ANGLE WITH VARIABLE VELOCITY RATIO (η)	35
4.3.3.	VARIABLE RANGE WITH A CONSTANT TARGET'S HEADING ANGLE	.36
4.3.4.	THE OPTIMUM MISSILE TRAJECTORY AND SUITABLE VELOCITY RATIO)37
4.4.	SIMULATION EXAMPLE OF OPTIMIZED ENGAGEMENT SCENARIO	39
CHAP	TER 5: THE HOMING MISSILE LATERAL ACCELERATION AUTOPILOT	.41
5.1.	Introduction	41
5.2.	THE IMPORTANCE OF THE MISSILE LATERAL AUTOPILOT	
5.3.	DEVELOPING THE MISSILE AUTOPILOT AND CONTROL LAW	42
5.3.1.	DERIVATION OF LATERAL ACCELERATION TRANSFER FUNCTION	.43
5.4.	THE AUTOPILOT CONFIGURATIONS OF THE MISSILE LATERAL ACCELERATION	45
5.4.1.	L.A.A USING ONE ACCELEROMETER AND ONE RATE GYRO	.46
5.4.2.	L.A.A. USING ACCELEROMETER AND RATE GYRO WITH PI COMPENSATOR	49
5.4.3.	L.A.A. USING AMPLIFIER WITH INTEGRATOR, ACCELEROMETER AND RATE GYRO	52
5.4.4.	L.A.A. USING TWO ACCELEROMETERS	54
5.4.5.	L.A.A. USING ACCELEROMETER, ANGULAR ACCELERATION GYRO ANI	
CHAPT	TER 6: NUMERICAL SIMULATION RESULTS	59
6.1.	THE SIMULATION RESULTS OF THE DG GUIDANCE ALGORITHM	59
6.1.1.	NON-MANEUVERING MISSILE AGAINST NON-MANEUVERING TARGET.	61
6.1.2.	NON-MANEUVERING MISSILE AGAINST MANEUVERING TARGET	66
6.1.3.	MANEUVERING MISSILE AGAINST NON-MANEUVERING TARGET	69
6.1.4.	MANEUVERING MISSILE AGAINST MANEUVERING TARGET	71
6.1.5.	GENERAL MANEUVERING OF THE MISSILE AND THE TARGET	74
6.2.	THE SIMULATION RESULTS OF THE DG VS. PN APPROACHES	76
6.2.1.	FRIST STAGE: CHANGING THE MISSILE VELOCITY	76
6.2.2.	SECOND STAGE: DIFFERENT MISSILE-TO-TARGET RANGES	79
6.2.3.	THIRD STAGE: D.G APPROACH AS A GENERALIZED GUIDANCE	
	APPROACH	82

6.3.	THE AUTOPILOT SIMULATION RESULTS OF HOMING MISSILES	.84
6.3.1.	L.A.A. USING ONE ACCELEROMETER AND ONE RATE GYRO	85
6.3.2.	L.A.A. USING ACCELEROMETER AND RATE GYRO WITH PI	86
6.3.3.	L.A.A. USING AMPLIFIER WITH INTEGRATOR, ACCELEROMETER AND RATE GYRO	87
6.3.4.	L.A.A. USING TWO ACCELEROMETERS	88
6.3.5.	L.A.A. USING ACCELEROMETER AND ANGULAR ACCELERATION GYRO	89
СНАРТ	ER 7: CONCLUSION AND RECOMMENDATIONS	91
7.1.	SUMMARY AND CONCLUSION	.91
7.2.	RECOMMENDATIONS FOR FUTURE WORK	.93
REFER	ENCES	95
APPEN	DIX A: THE FRENET-SERRET FORMULA	97
APPEN	DIX B: PROPORTIONAL NAVIGATION GUIDANCE LAW	99
APPEN	DIX C: MISSILE EQUATIONS OF MOTION	103