

Reduction of Metal Artifacts Produced by Dental Implants in CBCT Images

Thesis submitted to Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department in partial fulfillment of the requirements for the Doctorate Degree in Oral Radiology

Presented by

Shaimaa Mohamed Abu El-Sadat Ali

B.D.S, Ain Shams University, 2004

M.Sc., Ain Shams University, 2012

Supervised by

Dr. Mary Medhat Farid

Assistant Professor of Oral Radiology and Diagnostic Sciences,

Faculty of Dentistry, Ain Shams University

Dr. Walaa Mohamed Hamed Mohamed

Lecturer of Oral Radiology and Diagnostic Sciences,

Faculty of Dentistry, Ain Shams University

Dr. Yasser Mostafa Kadah

Professor of BioMedical Engineering

Faculty of Engineering, Cairo University

Faculty of Dentistry
Ain Shams University
2016

Acknowledgement

I would like to thank **Dr. Mary Medhat Farid**, Professor of Oral Radiology, Faculty of Dentistry, Ain Shams University, for her valuable consultation, expertise, and patience throughout the course of this work.

Also, I would like to thank **Dr. Walaa Mohamed Hamed**, Lecturer of Oral Radiology, Faculty of Dentistry, Ain Shams University, for her revision of this manuscript and her support.

I would like to show my gratitude to my esteemed colleagues **Dr. Mostafa Saad ElDin Mostafa**, Lecturer of Oral Radiology, Faculty of Dentistry, Ain Shams University.

I would like to extend my sincere thanks to **Dr. Mahmoud el Fahdawy**, for the statistical analysis part of the study.

I would also like to thank **Dr. Manar Mohsen**, MSc. Pedodontics, Ain Shams University.

Last but not least, I would like to thank my colleagues at Oral Radiology Department, Ain Shams University; Raghdaa Abu el Kheir, Fatma Mostafa for their continuous support

Table of Contents

Subjects	Page
Acknowledgement	
Table of Contents	ii
List of Tables	iii
List of Figures	vi
List of Abbreviations	ix
• Introduction	1
Review of Literature	
♦ Application of CBCT in Implantology	3
◆ <i>CBCT</i>	6
◆ Artifacts and Limitations of CBCT	23
♦ Metal Artifacts in CBCT	34
◆ Approaches for Metal Artifact Reduction	38
♦ Analysis of CBCT Images	44
Aim of the study	49
Materials and Methods	50
• Results	69
• Discussion	99
Summary and Conclusions	109
Recommendations	112
• References	113
Arabic Summary	

List of Tables

Table No.	Title		
Table 1	Technical parameters of Planmeca Promax Proface 3D Mid CBCT unit at the time of the study		
Table 2	The image quality assessment evaluation rating		
Table 3	Demographic data of included scans		
Table 4	ANOVA test showing differences in grey level values among different kVp† groups		
Table 5	Statistical significance by post hoc test of multiple comparisons between kVp groups regarding the grey level values†	70	
Table 6	ANOVA test showing differences in the grey level values among different regions	72	
Table 7	Statistical significance by post hoc test of multiple comparisons regarding the grey level values between different regions	72	
Table 8	Paired t test showing differences in grey level values between prior and post-implant placement groups	74	
Table 9	Paired t test showing differences in grey level values between 4*5 and 5*8 FOVs groups†	75	
Table 10	Paired <i>t</i> test showing differences in grey level values between with and without MAR groups†	76	

Table 11	Pearson correlation coefficient test showing correlation between prior implant and post-implant with other tested variables	77			
Table 12	Pearson correlation coefficient test showing correlation between each different implant placement regions with other tested variables				
Table 13	Pearson correlation coefficient test showing correlation between 4*5 and 5*8 FOVs with other tested variables†				
Table 14	Pearson correlation coefficient test showing correlation between MAR application groups with 70, 80 and 90 kVp groups†				
Table 15	Pearson Chi-Square showing the distribution and significance of streak artefacts within coronal section among peak kilovoltage groups	81			
Table 16	Pearson Chi-Square showing the distribution and significance of streak artefacts within coronal section between the two FOVs				
Table 17	Pearson Chi-Square showing the distribution and significance of streak artefacts within coronal section between with and without MAR application	85			
Table 18	Pearson Chi-Square showing the distribution and significance of streak artefacts within coronal section among different regions	87			
Table 19	Pearson Chi-Square showing the distribution and significance of streak artefacts within sagittal section among peak kilovoltage groups	89			
Table 20	Pearson Chi-Square showing the distribution and significance of streak artefacts within sagittal section between the two FOVs	91			

List of Tables

Table 21	Pearson Chi-Square showing the distribution and significance of streak artefacts within sagittal section with and without MAR application	93
Table 22	Pearson Chi-Square showing the distribution and significance of streak artefacts within sagittal section among different regions	95
Table 23	ICC showing intra-observer and inter-observer reliabilities regarding grey level values measurements	97
	and streak artefacts assessments†	

List of Figures

Figure		Page
_	Title	_
No.		No.
Figure 1	Principle of CBCT	8
rigure i	Timespie of CBC1	O
Figure 2	Fields of view. Representation of the extent of anatomical	9
	coverage for small (limited), medium (dentoalveolar)	
	and large (craniofacial) fields of view	
Eigung 2	Image intensifier	11
Figure 3	mage mensmer	11
Eigung 4	Cional conversion minerals for full field estima metalic	12
Figure 4	Signal conversion principle for full field active matrix detectors: with indirect-amorphous silicon (a-Si) detectors, as	12
	with direct-amorphous selenium (a-Se) detectors, electronic	
	charges are accumulated after X-ray exposure, then read out	
	by arrays of thin-film transistor (TFT*) switches before	
	analog-to-digital signal conversion	
Figure 5	Light photons are guided through the needle-like	13
	structure (about 5µm in diameter each) of the	
	scintillating crystal onto the photosensitive elements	
	(photodiodes) of the detector	
Figure 6	Volume fusion for two-circular-orbit cone-beam tomography	17
Figure 7	Typical aliasing patterns (Moire patterns) in CBCT data sets.	28
	The lines (arrows) diverge from the center towards the	
	periphery and are most probably caused by the	
	undersampling owing to the cone beam geometry	
771 0		2.0
Figure 8	a. Sagittal view showing white ring artefacts (black arrow) b.	30
	Illustration of ring artefacts in an axial slice of a low-contrast	
	CBCT scan	
Figure 9	Coronal (a) and axial (b) CBCT slices through a maxillary	31
1-80	left central incisor tooth restored with a post-retained crown.	
	Beam hardening caused by the metallic post has resulted in	
	the appearance of streaks and bands, impairing the quality of	
	the images	

List of Figures

Figure 10	Axial view with metallic streak artefact and aliasing of scan as linear radiolucent lines throughout the entire image	35	
Figure 11	levelling of the alveolar crest from the canine area to the molar area		
Figure 12	Drilling of the implant site in the premolar area		
Figure 13	Mimics® 10.01 (Materialise, Leuven, Belgium); MPR Interface	55	
Figure 14	a. Selection of the 'thresholding' tool b. Manual set of 'thresholding' tool (encircled)	55	
Figure 15	a. The chosen mask incorporating bone and excluding the drilled implant sites, b. "clear mask" tool selected to hide the chosen mask	56	
Figure 16	Coronal cut, with the axial plane perpendicular to the long axis of the implant drilling site	57	
Figure 17	Edit mask tool encircled	58	
Figure 18	Zoomed-in Segmented Drilled Implant Site	58	
Figure 19	Bone surrounding implant site after segmentation. A. Sagittal cut, B. Axial cut.	58	
Figure 20	Average value calculated from the drilled implants site measuring 688.8523	59	
Figure 21	a. Thresholding of implants and surrounding areas in the axial slice, b. 'Clear mask' tool applied to the selected mask	60	
Figure 22	Coronal slice, with the reference axial and sagittal lines passing through the implant	62	
Figure 23	Masking the implant and surrounding area using the selected local threshold value	63	

Figure 24	Zoomed-in image for separated implant, with the selected circle conforming roughly to the size of the implant. The image revealed that some pixels were included and others were excluded during implant separation	63
Figure 25	White streak extending outwards from the periphery of the implant distorting the outline of the implant (blue arrow)	64
Figure 26	Axial cut showing separation of the implant excluding the white streaks at the bottom left corner of the figure (red arrow)	64
Figure 27	Complete separation of the implant and calculation of the grey level value (942.2439)	65
Figure 28	Diagrammatic representation of the standardized rating	66
Figure 29	a. Coronal slice showing streak artefacts involving both right surface (apical and middle thirds) and left surface (middle third) b. Streak artefacts involving both anterior and posterior surfaces along almost the full length of the implant	67
Figure 30	a . No streak artefacts for both right and left sides (with MAR), 4x5 FOV, 70 kVp Rating: zero, b . no streak artefacts for both anterior and posterior surfaces (with MAR), Sagittal 5x8 FOV, 70 KVp Rating: zero	67
Figure 31	Histograms showing the differences in mean and SD of grey level values among the kVp groups	71
Figure 32	Histograms showing the differences in mean and SD of grey level values among different regions	73
Figure 33	Histograms showing the differences in mean and SD of grey level values prior and post-implant placement	74
Figure 34	Histograms showing the difference in mean and SD of grey level values between 4*5 and 5*8 FOVs	75

List of Figures

Figure 35	Histograms showing the difference in mean and SD of grey level values between with and without MAR application	76
Figure 36	Bar chart showing the distribution of streak artefacts within coronal section among the peak kilovoltage groups	82
Figure 37	Bar chart showing the distribution of streak artefacts within coronal section between the two FOVs	84
Figure 38	Bar chart showing the distribution of streak artefacts within coronal section between with and without MAR application	86
Figure 39	Bar chart showing the distribution of streak artefacts within coronal section among different regions	88
Figure 40	Bar chart showing the distribution of streak artefacts within sagittal section among the peak kilovoltage groups	90
Figure 41	Bar chart showing the distribution of streak artefacts within sagittal section between the two FOVs	92
Figure 42	Bar chart showing the distribution of streak artefacts within sagittal section at with and without MAR application	94
Figure 43	Bar chart showing the distribution of streak artefacts within sagittal section among different regions	96

List of Abbreviations

2-D	:	Two-dimensional
3-D	:	Three-dimensional
AAOMR	•	American Association of Oral and Maxillofacial Radiology
ALARA	:	As Low As Reasonably Achievable
a-Se	:	Amorphous selenium
a-Si	:	Amorphous silicon
aSi:H	:	Hydrogenated amorphous silicon
CBCT	:	Cone-beam computed tomography
CCD	:	Charged-couple device
CNR	:	Contrast-to-noise ratio
CsI	:	Cesium iodide
СТ	:	Computed tomography
DECT	:	Dual-energy computed tomography
DQE	:	Detector quantum efficiency
DVR	:	Direct Volume Rendering
FBP	:	Filtered back projection
FDK	:	Feldkamp
FOV	:	Field of view
FPD	:	Flat Panel Detectors
HU	:	Hounsfield unit
IIT/CCD	:	Image intensifier system tube/charge-coupled device
IVR	:	Indirect Volume Rendering
KVp	:	Kilo voltage peak
lp/cm	:	Line pairs per centimeter
MAR	:	Metal artifact reduction
MARli	:	Linear interpolation metal artefact reduction

List of Abbreviations

MARSS	:	Metal artifact reduction by sequential substitution
MDCT	:	Multidetector computed tomography
MPR	:	Multiplanar reformation
MSCT	:	Multislice computed tomography
MTF	:	Modulation transfer function
NMAR	:	Normalized metal artefact reduction
SNR	:	Signal-to-noise ratio
SSCT	:	Single slice computed tomography
TFT	:	Thin-film transistor
WFBP	:	weighted filtered back-projection

الملخص العربي:

الأشعة المقطعية المخروطية توفر صور واضحة ثلاثية الابعاد وتستخدم بصورة واسعة في تشخيص الراس والرقبة.

الغرض من هذه الدراسة لتقييم الحد من التحف المعدنية التي تنتجها زراعة الأسنان في الصور الأشعة المقطعية المخروطية باستخدام الحقول الصغيرة والمتوسطة للعرض وذروات فولتية مختلفة مع وبدون تخفيض الحرفية الخوارزمية مع الهدف النهائي المتمثل في إيجاد ان كانت قيمة مستوى الرمادي وجودة الصور هي أكثر عرضة للتغيير إحصائيا مع هذه المتغيرات.

تم حفر ثلاثة ثقوب زرع في مواقع الزرع المقترحة؛ في الناب والضاحك ومناطق الرحى من الفك السفلي عديم الاسنان. كمجموعة ضابطة فحص الفك السفلي دون وضع الزرعة باستخدام مجال العرض صغير (4*5) والمتوسطة (5*8). تم إجراء التصوير لكل مجال عرض في 70 و80 و90 كيلو فولت. تم وضع الزرعات في المواقع المحفورة وتم فحص الفك السفلي مرة أخرى باستخدام المقاييس السابقة. تم تقييم الصور باستخدام برنامج ميمك المداب متوسط مستوى اللون الرمادي المحيط بالزرعات للتقييم الكمي في حين شارك التقييم النوعي كتقييم شخصي للمنطقة المحيطة بالزرعات.

وقد أجريت الدراسة على بيانات من مسح الأشعة المقطعية المخروطية للفك السفلي. تم قياس قيم مستوى الرمادي كبيانات حجمية على مقاطع محورية لقبل وما بعد وضع الزرعات (4 مسحات لكل مجموعة مع 70 و80 و90 ذروات فولتية) ب 4 صور بالاشعة لكل قيمة ذروة فولتية 4) بمجالين عرض بمعدل صورتين لكل مجال مع وبدون استخدام اختزال الاخطاء المعدنية بمعدل 12صورة بالاشعة لكل مجموعة). وقد تم تحليل العلاقات المتبادلة والارتباط بين هذه البيانات.

أظهرت مجموعة 70 ذروة الفولتية قيمة مستوى الرمادية أكبر بكثير من كل من ذروتي الفولتية 80 و90. كما ظهر الفرق ضئيل في قيم مستوى الرمادي بين مجموعتي 80 و90 ذروتي الفولتية. أظهرت منطقة الرحي قيمة مستوى الرمادي أصغر بكثير من كل من منطقتي الضاحك والناب. أظهر الضاحك والناب اختلافات ضئيلة في قيم مستوى الرمادي. أظهرت مجموعة ما بعد الزرعات قيمة مستوى الرمادية أكبر بكثير من مجموعة ما قبل

الزرعات. أظهرت 8*5 مجموعة مجال العرض قيمة مستوى الرمادية أكبر بكثير من 4*5 مجموعة مجال العرض. أظهرت مجموعات مع أو بدون اختزال الاثرية المعدنية فروقا معنوية في قيم مستوى الرمادي.

وفيما يتعلق تحليل الأثرية المعدنية المتتالية في مجال العرض الاكليلي كانت العلاقات بين القطع الأثرية المتتالية والمناطق المختلفة ومجموعات اختزال الاثرية المعدنية اظهرت وجود فروق ذات دلالة إحصائية بين المجموعات.

وفيما يتعلق بتحليل الأثرية المعدنية المتتالية في مجال العرض السهمي كانت العلاقات بين القطع الأثرية المتتالية والمناطق المختلفة وتطبيق اختزال الاثرية المعدنية كبيرة. لا توجد فروق ذات دلالة إحصائية للمقارنات المتبقية بين المجموعات. كانت هناك دلالة إحصائية جيدة جدا للمصداقية لقراءات الباحث وبين الباحث الابتدائي وباحث مستقل.

Introduction

Cone-beam computed tomography (CBCT) was developed and introduced specifically for dento-maxillofacial imaging. CBCT is now the modality of choice in oral implantology. Nevertheless, when CBCT is used in regions containing dense objects as metallic implants, X-ray radiation is drastically attenuated because of the effect of these metallic implants. Artefacts are inevitable. Often, resulting in data distortion of the corresponding projection and artefacts in reconstructed images. An artefact is any distortion or error in image that is unrelated to the object being examined. These artefacts induced by metal implants are all referred to as metal artefacts, as they are only one of several types of artefacts found in all types of computed tomography (CT) imaging.

Distortion, especially in close proximity to the implants, will inevitably override the diagnostic value of an image.² Without doubt, this in turn would affect the accuracy of the clinicans' interpretation of the entire image volume as well as their judgment on dental illness or treatment outcome.³

Therefore, in order for CBCT examination to be clinically accepted in the follow-up of implants in the dento-maxillofacial region, diagnostic value of images obtained is encouraged. For that reason, it is essential to investigate various technical parameters which affect the inevitable appearance of artefacts. Studying the combined effect of such factors will contribute to knowing typical regions of artefacts, their shape and intensity which would ultimately help in planning and interpretation of CBCT examinations.²