Studies on the formation and corrosion resistance of phosphate coatings on steel

A Thesis
Submitted to
Chemistry Department
Faculty of Science-Cairo University

By
Walid Mahmoud Osman Farag
B.Sc., Cairo University, 1999
(Very good with honour degree)

In Partial Fulfillment for The Requirements of

The Degree of Master of Science

(Chemistry)

2009

Acknowledgments

It is a great honor to me to take the chance to express my greatest gratitude and appreciation to **Dr. Said Mashaal**, Minster of Military Production, for his great project and his supporting to all the military production members in all the fields of Science.

I wish to express my sincere thanks and appreciation to **Prof. Dr. Amin Mahmoud Baraka** ,professor of physical Chemistry, Faculty of Science, Cairo University, for all authentic scientific guidance, starting from suggesting this work, his remarkable help, continuous supervision, great support and encouragement in performing this work

I would like to express my thanks to all the staff of military production, especially for all those participating in increasing my knowledge and encouragement in performing this work.

I would like to express my thanks to my teacher in surface chemistry **Ehab El Shabrawy** for his kind advices and his remarkable help.

I would like to express my thanks and gratitude for my dear Wife, **Fatma Mohamed Shebel**, for her continuous support, valuable help and encouragement in performing this work.

Finally I would like to thanks the normal support My Parents.

Walid Mahmoud Osman Cairo 2009 Besides the work carried out in this thesis, the candidate "Walid Mahmoud Osman Farg "passed successfully a qualifying examination for partial fulfillment of the M.Sc.Degree (2002) in the following topics:

- 1-Mathematical Modeling in Physical Chemistry
- 2-Catalysis and colloids
- 3-Electrochemistry of Molten Salts
- 4-Metallurgy
- 5-Statistical Thermodynamics
- 6-Cyclic Voltammetry
- 7-Electrochemistry
- 8-Solar Energy
- 9-Electrode Kinetics
- 10-Adsorption
- 11-X-ray Thermal Analysis
- 12-Thermal Analysis
- 13-Quantum Chemistry
- 14-Nuclear Chemistry
- 15-Molecular Structural Determination
- 16-Chelatimetry
- 17-Advanced Analytical Chemistry
- 18-Ionizing Salt
- 19-Inorganic Reaction Mechanism
- 20-Quality Control and Quality Assurance in Chemistry
- 21-Advanced Inorganic Chemistry
- 22-Mathematics
- 23-German Language

Prof. Dr. Mohamed M. Shoukry

Chairman of the Chemistry Department Faculty of Science, Cairo University

ABSTRACT

Name: Walid Mahmoud Osman Farag

Titles of thesis: Studies on the formation and corrosion resistance of

phosphate coatings on steel.

Degree. (Master) thesis, Faculty of Science, Cairo University, 2009

This work has been carried out to investigate the possibility of use of the fire extinguisher powder which contain at least 88% mono-ammonium phosphate in the iron phosphate process. The obtained results indicated that the fire extinguisher powder can be used in the bath of iron phosphating process. Also the zinc phosphate process was studied and the characterization of zinc phosphating coatings was performed using the different tests. The effect of time and bath temperature on the mass of zinc phosphate coatings was also studied; the result showed that the coating mass increases with increase in time and increase in temperature. The pitting corrosion resistance of zinc phosphated specimens and zinc phosphated then painted specimens at different immersion time in NaCl solution of different concentrations using Potentiodynamic polarization measurements. The obtained results indicate that the optimum immersion time for phosphating process was 20 min. Also, the painting of the phosphated layer greatly decreased the porosity of the coating and increases the corrosion and pitting corrosion resistance.

Key words: Iron phosphate; fire extinguisher powder; Zinc phosphate; Zinc phosphate coatings; pitting corrosion resistance; ammonium phosphate

Supervisors: Prof.Dr. /Amin Mahmoud Baraka

Dr./ Amal Ismail Hassan

Prof. Dr. Mohamed M. Shoukry

Chairman of Chemistry Department.

Faculty of Science, Cairo University

List of Contents

List of Tables	
List of Figures	
CHAPTER ONE :INTRODUCTION AND AIM OF THE PRESENT	
WORK	1
Aim of the present work	2
CHAPTER TWO:LITERATURE SURVEY	3
Phosphate Coatings	3
Composition of Phosphate Coating	6
Applications	9
Process Fundamentals	18
Cleaning	19
Pickling and Descaling	19
Rinsing after Cleaning	22
Phosphating Methods	23
Rinsing after Phosphating	26
Chromic Acid Rinsing	27
Solution Maintenance Schedules	27
Break-in of Phosphating Solutions	29
Control of Coating Weight	29
Control of Crystal Size	30
Repair of Phosphate Coatings	33
Phosphate Coating Selection	33
CHAPTER THREE :EXPERIMENTAL AND TESTS	38
Experimental	38
Sample preparation	38
Sequence of phosphating Process	38
Sequence and details of operations for spraying iron phosphate	39
Sequence and details of operations for spraying iron phosphate by using	

fire extinguisher powder	
Sequence and details of operations for zinc phosphate	42
Testing for phosphating process	47
Phosphate Bath Testing	50
Phosphate coating analysis	51
Paint ability Tests	54
Pitting corrosion resistance	59
CHAPTER FOUR: RESULTS AND DISCUSSION	59
Results of spraying iron phosphate	60
The results of zinc phosphate	60
Pitting corrosion resistance	66
Potentiodynamic polarization measurements of phosphated specimens	80
Potentiodynamic polarization measurements of phosphated and painted	80
specimens	
SUMMARY AND CONCLUSION	103
REFERENCES	128
SUMMARY IN ARABIC	132

List of Tables

Table (1) A typical formulation for an iron phosphate bath	4		
Table (2) Accelerators used in phosphate coating processes	8		
Table (3) the protective effect of the inhibitors	12		
Table (4) Mean values of I_{corr} , E_{corr} and corrosion inhibiting efficiency (θ)	14		
obtained from the cathodic polarization curves			
Table (5) Corrosion resistance of phosphate coatings obtained by anodic	15		
electrochemical treatment in 3.5% NaCl evaluated by immersion test,			
potentiodynamic polarization and EIS studies			
Table (6) Operating temperature ranges for phosphating solutions in	26		
phosphating applications			
Table (7) Sequence of operations for spray zinc phosphating;	28		
coating weight ranged from 1.7 to 2.1 g/m ²			
Table (8) Process parameters for selected phosphate coatings	34		
Table (9) Chemical composition of carbon steel used as substrate	38		
Table (10) Chemical composition of concentrated iron phosphate bath	39		
Table (11) Sequence and details of operations for Spraying Iron phosphate	40		
Table (12) Sequence and details of operations for spraying iron phosphate	45		
by using fire extinguisher powder			
Table (13) Chemical composition of concentrated zinc phosphate bath	47		
Table (14) Sequence and details of operations for zinc phosphate	48		
Table (15) The results of phosphate bath for spraying Iron phosphate	61		
Table (16) The results of phosphate bath for spraying iron phosphate	61		
using fire extinguisher powder			
Table (17) comparison table between spraying iron phosphate and	65		
spraying iron phosphate using fire extinguisher powder			
Table (18) The results of phosphate bath for immersion zinc phosphate	67		

Table(19)the phosphate coating mass against time	72
Table (20) The phosphate coating mass(g/m²) at different temperatures	73
Table(21) Corrosion resistance of phosphated and painted steel after 72 h	77
Table (22) a comparison table between iron phosphate and zinc phosphate	78
Table (23) The Potentiodynamic anodic polarization measurements of	86
phosphated specimens	
Table(24) The Potentiodynamic anodic polarization measurements of	87
phosphated specimens	
Table(25) The Potentiodynamic anodic polarization measurements of	109
phosphated and painted specimens	
Table(26) The Potentiodynamic anodic polarization measurements of	110
phosphated and painted specimens	

List of Figures

Fig (1) Corrosion resistance of selected metal finishes relative to type	11
Of phosphate coating applied.	
Fig. (2) Variations in the cross-sectional shape of pits.	16
Fig. (3) Standard rating chart for pits.	17
Fig. (4) Plot of manganese phosphate coating weight vs. time of exposure	25
of steel surface to phosphating solution.	
Fig. (5) Sequence of operations for light vs. heavy applications of	30
Manganese phosphate coatings.	
Fig (6) Photomicrographs of microstructures for principal phosphate	31
coatings.	
Fig (7) Classification of adhesion test results.	57
Fig (8) Photographs of phosphate coating for immersion time 10 min.	69
Fig (9) Photographs of phosphate coating for immersion time 15 min.	69
Fig (10) Photographs of phosphate coating for immersion time 20min.	69
Fig (11) Photographs of phosphate coating for immersion time 25min.	70
Fig (12) Photographs of phosphate coating for immersion time 30min.	70
Fig (13) SEM photographs of phosphate coating and painted for	71
immersion time 10 min	
Fig (14) The effect of phosphate time on phosphate coating mass.	72
Fig (15) The effect of bath temperature on phosphate coating mass.	73
Fig(16)the potentiodynamic anodic polarization curves of blank	88
specimen.	
Fig(17)the potentiodynamic anodic polarization curves of specimen	89
phosphated for 10 min.	
Fig(18)the potentiodynamic anodic polarization curves of specimen	90
phosphated for 1° min.	

Fig(19)the potentiodynamic anodic polarization curves of specimen	91
phosphated for Y· min	
Fig(20)the potentiodynamic anodic polarization curves of specimen	92
phosphated for Yo min	
Fig(21)the potentiodynamic anodic polarization curves of specimen phosphated for *• min	93
Fig(22) The variation of pitting corrosion potential, E_{pit} , with $log C_{Cl}$	94
Fig (23) The plots of E _{pit} values for six specimens(blank +5 phosphated)	95
immersed in 0.01M NaCl and 1.0 M NaCl	
Fig (24) The potentiodynamic curves for the determination of E _{pit} and	96
repassivation potential, E _p , for the blank specimen	
Fig (25) The potentiodynamic curves used for the determination of	97
E _{pit} and E _p , for the phosphated specimens at 20 minutes	
Fig(26)the repassivation potential, E_p , for the blank specimen and	98
specimens phosphated at different immersion time in phosphating bath	
versus log C _{Cl}	
Fig(27) the values of $(E_{pit} - E_p)$ versus $\log C_{Cl}$	99
Fig(28) the variation of the integrated charge amount q_a , with $\log C_{Cl}$	100
Fig (29)The values of (Epit-Ep)for the different specimens immersed in	101
0.01M &1.0 M NaCl solution	
Fig (30) The values of q _a for different specimens immersed in 0.01 M&	102
Fig (30) The values of q _a for different specimens immersed in 0.01 M& 1.0M NaCl solution	102
	102
1.0M NaCl solution	
1.0M NaCl solution Fig(31)the potentiodynamic anodic polarization curves of phosphated	
1.0M NaCl solution Fig(31)the potentiodynamic anodic polarization curves of phosphated and painted specimen at 10 min	111
1.0M NaCl solution Fig(31)the potentiodynamic anodic polarization curves of phosphated and painted specimen at 10 min Fig(32)the potentiodynamic anodic polarization curves of phosphated	111
1.0M NaCl solution Fig(31)the potentiodynamic anodic polarization curves of phosphated and painted specimen at 10 min Fig(32)the potentiodynamic anodic polarization curves of phosphated and painted specimen at 15 min	111

and painted specimen at 20 min	
Fig(35)the potentiodynamic anodic polarization curves of phosphated	115
and painted specimen at 20 min	
Fig. (36). the variation of pitting corrosion potential, E_{pit} , with, $\log C_{Cl}$,	116
for the investigated specimens	
Fig (37) Epit values for the investigated specimens in 0.01 M&1.0M	117
NaCl solution	
Fig (38) The potentiodynamic curves used for the determination of	118
E _{pit} and E _p , for the phosphated and painted specimen at 20 minute	
Fig. (39) The repassivation potential, E _p , for the blank specimen and	119
specimens phosphated and painted are plotted versus log C_{Cl}	
Fig.(40) The values of $(E_{pit}$ - $E_p)$ versus the log C_{Cl} -	120
Fig(41) The integrated charge amount q _a versus log C _{Cl} -	121
Fig (42) (Epit-Ep) for the blank and phosphated and painted specimens	122
in 0.10 M & 1.0 M NaCl solution	
Fig (43) qa for the blank and phosphated and painted specimens in	123
0.01 M &1.0 M NaCl solutions	
Fig (44) (Epit-Ep) values for the phosphated and (phosphated & painted)	124
in 0.01M NaCl solution	
Fig (45) (Epit-Ep) values for the phosphated and (phosphated &painted)	125
specimens in 1.0 M NaCl solution	
Fig (46) q _a values for the phosphated and (phosphated &painted)	126
specimens in 0.01 M NaCl	
Fig (47) q _a values for the phosphated and (phosphated &painted)	127
specimens in 1.0 M NaCl	

CHAPTER ONE

INTRODUCTION AND AIM OF THE PRESENT WORK

Phosphate conversion coatings are employed in many industries either for corrosion protection, preparation of the metal surface for improved paint adhesion, or for decoration. Less commonly, phosphatizing is used to improve the lubrication, or as a base for adhesives in plastic-metal laminations or rubber-to-metal applications [1,2]. It serves as a conversion coating in which a dilute solution of phosphoric acid, which is applied via spraying or immersion, chemically reacts with the surface of the part being coated to form a layer of insoluble, crystalline phosphates[1, 2]. This type of coating can be applied on steels [3-7], galvanized steel [6,12], iron [7,8], magnesium [10,13,14], aluminum [11-15] and zinc [16]. There are many types of phosphating baths such as, zinc based [3,16-19], manganese based [6,20-22], iron based [23], A fourth type, lead phosphate, more recently introduced, or even a combination of them. The type of coating used depends on the phosphated material application (Manganese phosphates are used both for corrosion resistance and lubricity and are applied only by immersion. Iron phosphates are typically used as a base for further coatings or painting and are applied by immersion or by spraying. Zinc phosphates are used for rust proofing, lubricity, and as a paint/coating base and can also be applied by immersion or spraying). The chemical compounds that act as accelerators (accelerate the phosphating process) might be oxidant compounds or salts of metals nobler than the metal to be phosphated.

The purposes of these accelerators are:

- 1-Speed up the rate of coating to oxidize ferrous iron
- 2- Reduce crystal size.

Various types of chemical accelerators for phosphating can be used such as sodium nitrite [3,9,13,24-26], nitrates [5,9,10,13,14,24,25,27,28], and chlorates [27,29].

Besides the chemical accelerator other additives are used to afford other specific properties.

Various additives are used such as calcium ions [9,29-32],manganese ions [18,20,22,27,32-34], tartaric acid [10,14], fluoride ions [10,13-15,24,26], nickel ions [3,15,18,25,27,29,35], copper ions [36] molybdenum ions [14,34] and, more recently, niobium [36].

Aim of the present work:

- 1- Investigate the possibility of use the available materials such as fire extinguisher powder which contain at least 88% mono-ammonium phosphate which represent an environmental problem to get rid of it in our factory in the iron phosphate process
- 2-Study the zinc phosphate process and the characterization of phosphate coatings.
- 3- Study the effect of time and bath temperature of zinc phosphate process on the zinc phosphate coating mass.
- 4-Study the corrosion behaviour (pitting corrosion resistance) of zinc phosphated and zinc phosphated then painted steel using Potentiodynamic polarization measurements.

CHAPTER TWO

LITERATURE SURVEY

According to literature [1] and [37] phosphating of metallic substrates occurs through the following reactions:

$$Me_{(s)} + 2H^{+} \rightarrow Me^{2+} + H_{2(g)}$$
 (1)

$$3Zn^{2+} + 2H_2PO_4^- + 4H_2O \rightarrow Zn_3 (PO_4)_24H_2O + 4H^+$$
 (2)

$$Fe^{2+} + 2Zn^{2+} + 2H_2PO_4^- + 4H_2O \rightarrow Zn_2Fe (PO_4)_24H_2O + 4H^+$$
 (3)

The first reaction corresponds to the metal attack by the acid phosphating solution and the two following reactions lead to phosphate crystals formation and deposition on the metallic surface.

The weight and crystalline structure of the coating and the extent of penetration of the coating into the base metal can be controlled by:

- 1-Method of cleaning before treatment.
- 2-Use of activating rinses containing titanium and other metals
- 3-Method of applying the solution.
- 4-Temperature, concentration, and duration of treatment.
- 5-Modification of the chemical composition of phosphating solution.

Phosphate coatings range in thickness from less than 3 to 50 µm. Coating weight (grams per square meter of coated area), rather than coating thickness, has been adopted as the basis for expressing the amount of coating deposited.

Phosphate coatings

Three principal types of phosphate coatings are in general use: Zinc, Iron, and Manganese. A fourth type, Lead phosphate, more recently introduced.

Zinc phosphate coatings

It encompasses a wide range of weights and crystal characteristics, ranging from heavy films with coarse crystals to ultrathin microcrystalline deposits.